scholarly journals DEVELOPMENT OF A LOW-COST OPEN-SOURCE PLATFORM CONNECTED TO THE INTERNET FOR ACQUISITION OF ENVIRONMENTAL PARAMETERS AND SOIL MOISTURE

2021 ◽  
Vol 41 (3) ◽  
pp. 338-346
Author(s):  
Jair S. S. Pinto ◽  
Luis C. Camargo ◽  
Sergio N. Duarte
2021 ◽  
Author(s):  
Elad Levintal ◽  
Yonatan Ganot ◽  
Gail Taylor ◽  
Peter Freer-Smith ◽  
Kosana Suvocarev ◽  
...  

2009 ◽  
Vol 34 (3) ◽  
Author(s):  
Michael Felczak ◽  
Richard Smith ◽  
Geoffrey Glass

Abstract: A communication rights framework is used to evaluate recent government online initiatives in Canada. Through an analysis of policy documents, government websites, user experiences, and the existing and evolving computing environment, the authors argue that government online programs fail to adequately ensure the communication rights of Canadians who use free and open source software, including Canadians who seek alternatives to proprietary software, Canadians who require low-cost computing, and Canadians who access the Internet via public libraries and community centres that use free and open source software. Existing government programs also fail to ensure the communication rights of Canadians without access to the Internet, including Canadians who do not use or plan to use the Internet. The authors identify specific problem areas in the provision of government information, services, and consultations and suggest policy recommendations that address the identified shortcomings.Résumé : Dans cet article, les auteurs utilisent une perspective fondée sur le droit à la communication pour évaluer des initiatives en ligne de la part du gouvernement canadien. Au moyen de l’analyse de documents de politique générale, de sites gouvernementaux, d’expériences d’utilisateurs et de l’environnement informatique actuel dans son évolution constante, les auteurs soutiennent que les programmes gouvernementaux en ligne ne réussissent pas à protéger de manière adéquate les droits de communication des Canadiens qui utilisent des logiciels libres gratuits, y compris ceux qui désirent une alternative aux logiciels propriétaires, ceux qui dépendent de services informatiques à bas prix et ceux qui accèdent à Internet dans les bibliothèques et centres communautaires équipés de logiciels libres gratuits. En outre, les programmes gouvernementaux actuels sont incapables de protéger les droits de communication de ces Canadiens qui n’ont pas accès à Internet, c’est-à-dire ceux qui ne l’utilisent pas présentement ainsi que ceux qui n’ont pas l’intention de l’utiliser. Les auteurs identifient des problèmes spécifiques reliés à la fourniture d’informations, de services et de consultations de la part du gouvernement et recommandent des politiques qui s’adressent aux défauts identifiés.


Author(s):  
Cristina Portalés ◽  
Sergio Casas ◽  
Kai Kreuzer

Home automation (HA) systems can be considered as an implementation of the internet of everything (IoE) where many devices are linked by intelligent connections in order to improve the quality of life at home. This chapter is dedicated to analyzing current trends and challenges in HA. Energy management, safer homes, and improved control over the house are some of the benefits of HA. However, privacy, security, social disruption, installation/maintenance issues, economic costs, market fragmentation, and low interoperability represent real problems of these IoE solutions. In this regard, the latest proposals in HA try to answer some of these needs with low-cost DIY solutions, wireless solutions, and IP-based HA systems. This chapter proposes a way to deal with the interoperability problem by means of the open-source platform openHAB. It is based on the concept of a home automation bus, an idea that enables the separation of the physical and the functional view of any device, allowing to create a technology-agnostic environment, which is perfect for addressing the interoperability problem.


10.29007/q4cf ◽  
2018 ◽  
Author(s):  
Ronak Vithlani ◽  
Siddharth Fultariya ◽  
Mahesh Jivani ◽  
Haresh Pandya

In this paper, we have described an operative prototype for Internet of Things (IoT) used for consistent monitoring various environmental sensors by means of low cost open source embedded system. The explanation about the unified network construction and the interconnecting devices for the consistent measurement of environmental parameters by various sensors and broadcast of data through internet is being presented. The framework of the monitoring system is based on a combination of embedded sensing units, information structure for data collection, and intellectual and context responsiveness. The projected system does not involve a devoted server computer with respect to analogous systems and offers a light weight communication protocol to monitor environment data using sensors. Outcomes are inspiring as the consistency of sensing information broadcast through the projected unified network construction is very much reliable. The prototype was experienced to create real-time graphical information rather than a test bed set-up.


Author(s):  
Chang-Gyu Cgseong ◽  
Jung-Yee Kim ◽  
Doo-Jin Park

<p>Recently, the Internet of things(IoT) has received great attention, and the demand for IOT applications in various fields is increasing. But drawbacks of IoT, such as having to use dedicated equipment and having to pay for a flat fee monthly, do not satisfy the consumers’ demands. These shortcomings of IoT is causing the appearance of users who try to design the environment of IoT that responds their demands and naturally, attempts to have monitoring system through open-source hardware like Arduino. Open source hardware has attracted a great deal of attention for the diffusion of the Internet of things as a key element of the Internet construction. The emergence of open source hardware, which has the advantage of low cost and easy and fast development, has made it possible to embody the idea of object Internet application services. In this paper, we design and implement a system that controls the objects in real time using open source hardware and MQTT protocol.</p>


2021 ◽  
Author(s):  
Elad Levintal ◽  
Yonatan Ganot ◽  
Gail Taylor ◽  
Peter Freer-Smith ◽  
Kosana Suvocarev ◽  
...  

Abstract. The use of wireless sensor networks in the measurement of soil parameters represents one of the least invasive methods available to date. Wireless sensors pose the least disturbance to soil structure and having fewer aboveground cables reduce the risk of undesired equipment damage and potential data loss. However, implementing wireless sensor networks in field studies usually requires advanced and costly engineering knowledge. This study presents a new underground, wireless, open-source, low-cost system for monitoring soil oxygen, temperature, and soil moisture. The process of system design, assembly, programming, deployment, and power management is presented. The system can be left underground for several years without the need for changing the battery. Emphasis was given on modularity so that it can be easily duplicated or changed if needed, and deployed without previous engineering knowledge. Data from this type of system have a wide range of applications, including precision agriculture and high-resolution modelling.


2022 ◽  
pp. 701-727
Author(s):  
Cristina Portalés ◽  
Sergio Casas ◽  
Kai Kreuzer

Home automation (HA) systems can be considered as an implementation of the internet of everything (IoE) where many devices are linked by intelligent connections in order to improve the quality of life at home. This chapter is dedicated to analyzing current trends and challenges in HA. Energy management, safer homes, and improved control over the house are some of the benefits of HA. However, privacy, security, social disruption, installation/maintenance issues, economic costs, market fragmentation, and low interoperability represent real problems of these IoE solutions. In this regard, the latest proposals in HA try to answer some of these needs with low-cost DIY solutions, wireless solutions, and IP-based HA systems. This chapter proposes a way to deal with the interoperability problem by means of the open-source platform openHAB. It is based on the concept of a home automation bus, an idea that enables the separation of the physical and the functional view of any device, allowing to create a technology-agnostic environment, which is perfect for addressing the interoperability problem.


Author(s):  
Cristina Portalés ◽  
Sergio Casas ◽  
Kai Kreuzer

Home automation (HA) systems can be considered as an implementation of the internet of everything (IoE) where many devices are linked by intelligent connections in order to improve the quality of life at home. This chapter is dedicated to analyzing current trends and challenges in HA. Energy management, safer homes, and improved control over the house are some of the benefits of HA. However, privacy, security, social disruption, installation/maintenance issues, economic costs, market fragmentation, and low interoperability represent real problems of these IoE solutions. In this regard, the latest proposals in HA try to answer some of these needs with low-cost DIY solutions, wireless solutions, and IP-based HA systems. This chapter proposes a way to deal with the interoperability problem by means of the open-source platform openHAB. It is based on the concept of a home automation bus, an idea that enables the separation of the physical and the functional view of any device, allowing to create a technology-agnostic environment, which is perfect for addressing the interoperability problem.


2015 ◽  
Vol 25 (1) ◽  
pp. 110-118 ◽  
Author(s):  
Rhuanito Soranz Ferrarezi ◽  
Sue K. Dove ◽  
Marc W. van Iersel

Substrate volumetric water content (VWC) is a useful measurement for automated irrigation systems. We have previously developed automated irrigation controllers that use capacitance sensors and dataloggers to supply plants with on-demand irrigation. However, the dataloggers and accompanying software used to build and program those controllers make these systems expensive. Relatively new, low-cost open-source microcontrollers provide an alternative way to build sensor-based irrigation controllers for both agricultural and domestic applications. We designed and built an automated irrigation system using a microcontroller, capacitance soil moisture sensors, and solenoid valves. This system effectively monitored and controlled VWC over a range of irrigation thresholds (0.2, 0.3, 0.4, and 0.5 m3.m−3) with ‘Panama Red’ hibiscus (Hibiscus acetosella) in a peat:perlite substrate. The microcontroller can be used with both regular 24-V alternating current (AC) solenoid valves and with latching 6- to 18-V direct current (DC) solenoid valves. The technology is relatively inexpensive (microcontroller and accessories cost $107, four capacitance soil moisture sensors cost $440, and four solenoid valves cost $120, totaling $667) and accessible. The irrigation controller required little maintenance over the course of a 41-day trial. The low cost of this irrigation controller makes it useful in many horticultural settings, including both research and production.


Sign in / Sign up

Export Citation Format

Share Document