scholarly journals An underground, wireless, open-source, low-cost system for monitoring oxygen, temperature, and soil moisture

2021 ◽  
Author(s):  
Elad Levintal ◽  
Yonatan Ganot ◽  
Gail Taylor ◽  
Peter Freer-Smith ◽  
Kosana Suvocarev ◽  
...  

Abstract. The use of wireless sensor networks in the measurement of soil parameters represents one of the least invasive methods available to date. Wireless sensors pose the least disturbance to soil structure and having fewer aboveground cables reduce the risk of undesired equipment damage and potential data loss. However, implementing wireless sensor networks in field studies usually requires advanced and costly engineering knowledge. This study presents a new underground, wireless, open-source, low-cost system for monitoring soil oxygen, temperature, and soil moisture. The process of system design, assembly, programming, deployment, and power management is presented. The system can be left underground for several years without the need for changing the battery. Emphasis was given on modularity so that it can be easily duplicated or changed if needed, and deployed without previous engineering knowledge. Data from this type of system have a wide range of applications, including precision agriculture and high-resolution modelling.

2018 ◽  
Vol 10 (8) ◽  
pp. 2628
Author(s):  
Heekwon Yang ◽  
Byeol Kim ◽  
Joosung Lee ◽  
Yonghan Ahn ◽  
Chankil Lee

The communication technology ZigBee has been widely adopted in wireless sensor networks (WSNs) for a wide range of industrial applications. However, although ZigBee provides low-power, low-cost mesh networking, it cannot guarantee steady and predictable network performance as channels are time-variant and highly attenuated by man-made obstacles. The networks also suffer from interference, especially in the important 2.4 GHz industrial, scientific, and medical (ISM) band. These degraded channel characteristics increase the number of hops, thus increasing both the packet error rate and transmission delays. In this paper, we report the deployment of a ZigBee-based WSN inside an existing building duct system utilized for intelligent waste collection in an industrial environment. The Received Signal Strength (RSS) and path losses were measured, revealing that the duct communication channel acts as a very effective waveguide, providing a more reliable and consistent network performance than conventional free space channels.


Fault Tolerant Reliable Protocol (FTRP) is proposed as a novel routing protocol designed for Wireless Sensor Networks (WSNs). FTRP offers fault tolerance reliability for packet exchange and support for dynamic network changes. The key concept used is the use of node logical clustering. The protocol delegates the routing ownership to the cluster heads where fault tolerance functionality is implemented. FTRP utilizes cluster head nodes along with cluster head groups to store packets in transient. In addition, FTRP utilizes broadcast, which reduces the message overhead as compared to classical flooding mechanisms. FTRP manipulates Time to Live values for the various routing messages to control message broadcast. FTRP utilizes jitter in messages transmission to reduce the effect of synchronized node states, which in turn reduces collisions. FTRP performance has been extensively through simulations against Ad-hoc On-demand Distance Vector (AODV) and Optimized Link State (OLSR) routing protocols. Packet Delivery Ratio (PDR), Aggregate Throughput and End-to-End delay (E-2-E) had been used as performance metrics. In terms of PDR and aggregate throughput, it is found that FTRP is an excellent performer in all mobility scenarios whether the network is sparse or dense. In stationary scenarios, FTRP performed well in sparse network; however, in dense network FTRP’s performance had degraded yet in an acceptable range. This degradation is attributed to synchronized nodes states. Reliably delivering a message comes to a cost, as in terms of E-2-E. results show that FTRP is considered a good performer in all mobility scenarios where the network is sparse. In sparse stationary scenario, FTRP is considered good performer, however in dense stationary scenarios FTRP’s E-2-E is not acceptable. There are times when receiving a network message is more important than other costs such as energy or delay. That makes FTRP suitable for wide range of WSNs applications, such as military applications by monitoring soldiers’ biological data and supplies while in battlefield and battle damage assessment. FTRP can also be used in health applications in addition to wide range of geo-fencing, environmental monitoring, resource monitoring, production lines monitoring, agriculture and animals tracking. FTRP should be avoided in dense stationary deployments such as, but not limited to, scenarios where high application response is critical and life endangering such as biohazards detection or within intensive care units.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1179
Author(s):  
Carolina Del-Valle-Soto ◽  
Carlos Mex-Perera ◽  
Juan Arturo Nolazco-Flores ◽  
Alma Rodríguez ◽  
Julio C. Rosas-Caro ◽  
...  

Wireless Sensor Networks constitute an important part of the Internet of Things, and in a similar way to other wireless technologies, seek competitiveness concerning savings in energy consumption and information availability. These devices (sensors) are typically battery operated and distributed throughout a scenario of particular interest. However, they are prone to interference attacks which we know as jamming. The detection of anomalous behavior in the network is a subject of study where the routing protocol and the nodes increase power consumption, which is detrimental to the network’s performance. In this work, a simple jamming detection algorithm is proposed based on an exhaustive study of performance metrics related to the routing protocol and a significant impact on node energy. With this approach, the proposed algorithm detects areas of affected nodes with minimal energy expenditure. Detection is evaluated for four known cluster-based protocols: PEGASIS, TEEN, LEACH, and HPAR. The experiments analyze the protocols’ performance through the metrics chosen for a jamming detection algorithm. Finally, we conducted real experimentation with the best performing wireless protocols currently used, such as Zigbee and LoRa.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2417
Author(s):  
Andrzej Michalski ◽  
Zbigniew Watral

This article presents the problems of powering wireless sensor networks operating in the structures of the Internet of Things (IoT). This issue was discussed on the example of a universal end node in IoT technology containing RFID (Radio Frequency Identification) tags. The basic methods of signal transmission in these types of networks are discussed and their impact on the basic requirements such as range, transmission speed, low energy consumption, and the maximum number of devices that can simultaneously operate in the network. The issue of low power consumption of devices used in IoT solutions is one of the main research objects. The analysis of possible communication protocols has shown that there is a possibility of effective optimization in this area. The wide range of power sources available on the market, used in nodes of wireless sensor networks, was compared. The alternative possibilities of powering the network nodes from Energy Harvesting (EH) generators are presented.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Asmaa Ez-Zaidi ◽  
Said Rakrak

Wireless sensor networks have been the subject of intense research in recent years. Sensor nodes are used in wide range of applications such as security, military, and environmental monitoring. One of the most interesting applications in wireless sensor networks is target tracking, which mainly consists in detecting and monitoring the motion of mobile targets. In this paper, we present a comprehensive survey of target tracking approaches. We then analyze them according to several metrics. We also discuss some of the challenges that influence the performance of tracking schemes. In the end, we conduct detailed analysis and comparison between these algorithms and we conclude with some future directions.


Sign in / Sign up

Export Citation Format

Share Document