scholarly journals Experimental and Analytical Investigation on the Effect of Heat Treatment Parameters on the Mechanical Properties of an API 5L X65 Steel

2021 ◽  
Vol 24 (2) ◽  
Author(s):  
Nicki Robbers Darciano Cajueiro de Moraes ◽  
Julianna Magalhães Garcia ◽  
Eustáquio de Souza Baêta Júnior ◽  
Renato Batista da Cruz ◽  
Luiz Paulo Brandao
2019 ◽  
Vol 269 ◽  
pp. 01009 ◽  
Author(s):  
Suryana ◽  
Agus Pramono ◽  
Iskandar Muda ◽  
Ade Setiawan

API 5L-X65 steel is the type of high strength low alloy (HSLA) steel, widely used in the manufacture of pipe. Submerged arc welding (SAW) is widely used for the fabrication of the pipe, the extent of use submerged arc welding caused it could be done automatically and high reliability. The results of the welding process will lead to differences and changes in the microstructure in heat affected zone (HAZ) and weld metal that will affect the mechanical properties of the output, so as to obtain good welding results required the selection of welding parameters accordingly. As the use of the heat input during welding is very important influence on the mechanical properties and microstructure of the weld. The purpose of this study to determine the effect of heat input on the microstructure, hardness and toughness of welds in submerged arc welding. Welding currents used were 200, 300, 400 and 500 Ampere with a voltage were used 25, 27 and 30 Volt. The results showed that the higher heat input will result in a growing area of HAZ region width and grain size increased. Highest hardness values are the results of the weld heat input with a low of 244.69 HVN caused by the rapid cooling rate of the weld area. The highest toughness values are the results of the highest heat input that was dominated by acicular ferrite phase.


Author(s):  
Diogo Trento Buzzatti ◽  
Luis Fernando Kanan ◽  
Giovani Dalpiaz ◽  
Adriano Scheid ◽  
Carlos Eduardo Fortis Kwietniewski

Author(s):  
M. A. McCoy

Transformation toughening by ZrO2 inclusions in various ceramic matrices has led to improved mechanical properties in these materials. Although the processing of these materials usually involves standard ceramic powder processing techniques, an alternate method of producing ZrO2 particles involves the devtrification of a ZrO2-containing glass. In this study the effects of glass composition (ZrO2 concentration) and heat treatment on the morphology of the crystallization products in a MgO•Al2•SiO2•ZrO2 glass was investigated.


2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


2019 ◽  
Vol 74 (6) ◽  
pp. 366-379 ◽  
Author(s):  
V. Jászfi ◽  
P. Prevedel ◽  
A. Eggbauer ◽  
Y. Godai ◽  
P. Raninger ◽  
...  

Alloy Digest ◽  
1953 ◽  
Vol 2 (10) ◽  

Abstract CONDULOY is a low beryllium-copper alloy containing about 1.5% nickel. It responds to age-hardening heat treatment for improved mechanical properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on casting, heat treating, machining, and joining. Filing Code: Cu-11. Producer or source: Brush Beryllium Company.


Alloy Digest ◽  
1985 ◽  
Vol 34 (5) ◽  

Abstract ALUMINUM 319.0 is a general-purpose foundry alloy that is moderately responsive to heat treatment. It has excellent casting characteristics and good mechanical properties. Among its many uses are crankcases, housings, engine parts, typewriter frames and rear-axle housings. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as creep and fatigue. It also includes information on low and high temperature performance as well as casting, heat treating, machining, and joining. Filing Code: Al-256. Producer or source: Various aluminum companies.


Sign in / Sign up

Export Citation Format

Share Document