Effect of heat input and heat treatment on the microstructure and toughness of pipeline girth friction welded API 5L X65 steel

Author(s):  
Diogo Trento Buzzatti ◽  
Luis Fernando Kanan ◽  
Giovani Dalpiaz ◽  
Adriano Scheid ◽  
Carlos Eduardo Fortis Kwietniewski
2021 ◽  
Vol 24 (2) ◽  
Author(s):  
Nicki Robbers Darciano Cajueiro de Moraes ◽  
Julianna Magalhães Garcia ◽  
Eustáquio de Souza Baêta Júnior ◽  
Renato Batista da Cruz ◽  
Luiz Paulo Brandao

2019 ◽  
Vol 269 ◽  
pp. 01009 ◽  
Author(s):  
Suryana ◽  
Agus Pramono ◽  
Iskandar Muda ◽  
Ade Setiawan

API 5L-X65 steel is the type of high strength low alloy (HSLA) steel, widely used in the manufacture of pipe. Submerged arc welding (SAW) is widely used for the fabrication of the pipe, the extent of use submerged arc welding caused it could be done automatically and high reliability. The results of the welding process will lead to differences and changes in the microstructure in heat affected zone (HAZ) and weld metal that will affect the mechanical properties of the output, so as to obtain good welding results required the selection of welding parameters accordingly. As the use of the heat input during welding is very important influence on the mechanical properties and microstructure of the weld. The purpose of this study to determine the effect of heat input on the microstructure, hardness and toughness of welds in submerged arc welding. Welding currents used were 200, 300, 400 and 500 Ampere with a voltage were used 25, 27 and 30 Volt. The results showed that the higher heat input will result in a growing area of HAZ region width and grain size increased. Highest hardness values are the results of the weld heat input with a low of 244.69 HVN caused by the rapid cooling rate of the weld area. The highest toughness values are the results of the highest heat input that was dominated by acicular ferrite phase.


2020 ◽  
Vol 1012 ◽  
pp. 412-417
Author(s):  
Misael Souto de Oliveira ◽  
Antonio Almeida Silva ◽  
Marco Antonio dos Santos ◽  
Jorge Antonio Palma Carrasco ◽  
João Vitor de Queiroz Marques

In this work the calibration of an Alternative Current Potential Drop (ACPD) system was performed to monitore laboratory mechanical tests on marine environment under cathodic protection. The calibration was done on CT type specimens of API 5L X65 steel dimensioned according to ASTM E1820 standard., The crack propagation during a tensile test with displacement control in an ACPD equipment was monitored through the performs points collection by two channels: one that monitors the crack growth and another that monitors a region free of crack. Using a profile projector and graphical data processing and analysis software, the area of ​​the fracture surface of the specimen was meansured, which allowed to correlate a crack size with a corresponding value of potential drop and the calibration curve. In order to verify verify the efficacy and precision of the technique, step loading tests were performed on API 5L X65 steel test specimens, submerged in synthetic sea water under the overprotection potential of-1300mVAg/AgCl. The results of the calibration showed few dispersed errors, and the main factors of this dispersion may be related to the geometry of the specimen and with variations in current flow density, which is influenced by corners and edges and by the presence of pick-up inductive. The calibration and its effectiveness can be verified through the results of the tests in marine environment, presenting crack lengths close to the actual values, confirming the effectiveness of the ACPD technique.


2018 ◽  
Vol 7 (3) ◽  
pp. 314-318 ◽  
Author(s):  
Mariana Cristina de Oliveira ◽  
Rodrigo Monzon Figueredo ◽  
Heloisa Andréa Acciari ◽  
Eduardo Norberto Codaro

2019 ◽  
Vol 58 (1) ◽  
pp. 38-49 ◽  
Author(s):  
Francois Njock Bayock ◽  
Paul Kah ◽  
Belinga Mvola ◽  
Pavel Layus

Abstract Dissimilar welding offers exiting benefits for a wide range of engineering applications, such as automotive bodies, piping systems of nuclear power plants, health equipment. The main advantages of dissimilarwelding applications areweight reductions, lower costs, unique properties combinations, and improved energy-efficiency. The properties of dissimilar weld depend on the type of welding process used, the accuracy of the process parameters control, the characteristics of the base metal and the heat treatment procedures. The current study reviews the scientific literature on the topic of thermal analysis of dissimilar high-strength steels (HSS) welding. The review of experimental data was carried out to analyze the variable heat input effect on dissimilar welds. The results indicate the welds mechanical properties irregularity and reduction in toughness and tensile strength due to uneven changes in the microstructure. Furthermore, postweld heat treatment (PWHT) often resulted in the formation of intermetallic compounds whose properties are dependent on the duration of treatment. The research results can be used to optimize the heat input of the HSS welding process.


Sign in / Sign up

Export Citation Format

Share Document