scholarly journals Micropropagation and assessment of somaclonal variation in Galanthus transcaucasicus in vitro plantlets

2021 ◽  
Vol 27 (4) ◽  
pp. 505-515
Author(s):  
Narges Asadi ◽  
Hossein Zarei ◽  
Seyyed Hamidreza Hashemi-Petroudi ◽  
Seyyed Javad Mousavizadeh

Abstract In vitro culture of twin-scaling explants of Galanthus transcaucasicus with different concentrations of plant growth regulators (PGRs) including 0.5, 1, 2, 3, 4, 6, 8, and 10 mg L-1 naphthaleneacetic acid (NAA) and 0.5, 1, 2, 3, and 4 mg L-1 benzyladenine (BA) was studied. After 18 weeks, the number of regenerated bulblets and intensity of callus was measured. Subsequently, bulblets were transferred to a medium with 0.5, 1, 2, 3, and 4 mg L-1 NAA and 0.5, 1, 2, 3, and 4 mg L-1 BA and, after 15 weeks, the bulblets length and diameter were measured. The highest intensity of callus was obtained on 4 mg L-1 NAA or 8 mg L-1 NAA with 1 mg L-1 BA. The highest number of regenerated bulblets was detected with 6 mg L-1 NAA and 2 mg L-1 BA. The highest diameter of bulblets occurred on four mgL-1 NAA (9.4 mm), while the lowest was observed on 0.5 mg L-1 BA (1.83 mm). The analysis of genetic variation using ISSR revealed that there was no somaclonal variation among the regenerated plants from BA and low level of NAA, but there was a significant somaclonal variation at high concentrations of NAA.

1995 ◽  
Vol 22 (2) ◽  
pp. 135-141
Author(s):  
Q. L. Feng ◽  
H. E. Pattee ◽  
H. T. Stalker

Abstract Research on in vitro embryo culture in Arachis has the objective of rescuing interspecific hybrid embryos which abort before they reach maturity. This study explored effects of the three exogenous plant growth regulators 1-naphthaleneacetic acid (NAA), gibberellic acid (GA3), and 6-benzylaminopurine (6-BAP); sucrose; and medium pH on in vitro fruit and embryo development of A. hypogaea L. by culturing 10-d-old peg tips. Results indicated that medium containing 0.5 to 1.0 mg L-1 NAA was optimal for in vitro pod formation and embryo development. GA3 did not have a significant influence and 6-BAP had negative effects on both in vitro fruit and embryo development. High concentrations of 6-BAP and NAA induced callus which inhibited ovary enlargement and embryo development. Sixty g L-1 sucrose was the best concentration for ovary enlargement and embryo development. Acidic medium was needed for in vitro reproductive development with pH 4.5–6.5 the most favorable. A pod formation frequency of 81%, a seed production rate of 90% (from pods recovered in vitro), and plant recovery of 33% were obtained for a medium containing 1.0 mg L-1 NAA and 0.5 mg L-1 GA plus 60 g L-1 sucrose at pH 5.8. In vitro-recovered cotyledonary embryos between 4 and 10 mm long germinated precociously into seedlings at relatively higher frequencies than morphologically mature embryos which produced more vigorous plants.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 320
Author(s):  
Nisar Ahmad Zahid ◽  
Hawa Z.E. Jaafar ◽  
Mansor Hakiman

Ginger (Zingiber officinale Roscoe) var. Bentong is a monocotyledon plant that belongs to the Zingiberaceae family. Bentong ginger is the most popular cultivar of ginger in Malaysia, which is conventionally propagated by its rhizome. As its rhizomes are the economic part of the plant, the allocation of a large amount of rhizomes as planting materials increases agricultural input cost. Simultaneously, the rhizomes’ availability as planting materials is restricted due to the high demand for fresh rhizomes in the market. Moreover, ginger propagation using its rhizome is accompanied by several types of soil-borne diseases. Plant tissue culture techniques have been applied to produce disease-free planting materials of ginger to overcome these problems. Hence, the in vitro-induced microrhizomes are considered as alternative disease-free planting materials for ginger cultivation. On the other hand, Bentong ginger has not been studied for its microrhizome induction. Therefore, this study was conducted to optimize sucrose and plant growth regulators (PGRs) for its microrhizome induction. Microrhizomes were successfully induced in Murashige and Skoog (MS) medium supplemented with a high sucrose concentration (>45 g L−1). In addition, zeatin at 5–10 µM was found more effective for microrhizome induction than 6-benzylaminopurine (BAP) at a similar concentration. The addition of 7.5 µM 1-naphthaleneacetic acid (NAA) further enhanced microrhizome formation and reduced sucrose’s required dose that needs to be supplied for efficient microrhizome formation. MS medium supplemented with 60 g L−1 sucrose, 10 µM zeatin and 7.5 µM NAA was the optimum combination for the microrhizome induction of Bentong ginger. The in vitro-induced microrhizomes sprouted indoors in moist sand and all the sprouted microrhizomes were successfully established in field conditions. In conclusion, in vitro microrhizomes can be used as disease-free planting materials for the commercial cultivation of Bentong ginger.


2021 ◽  
Author(s):  
Yuan-yuan Meng ◽  
Shi-jie Song ◽  
Sven Landrein

Abstract Passiflora xishuangbannaensis (Passifloraceae) is endemic to a few sites of Mengyang nature reserve in Yunnan, Xishuangbanna and less than 40 individuals have been recorded. Nine Passiflora species are endemic to Yunnan with most species occurring in South America, making P. xishuangbannaensis highly significant and emblematic to the conservation work in the region. This study is designed to provide the first protocol for in vitro organogenesis and plant regeneration for ex situ conservation and reintroduction for an Asian Passiflora species. Using internodes, petioles and tendrils we optimize calli formation and root elongation using several plant growth regulators, individually or in combination. We also assess the genetic stability of regenerated cells. The maximum callus induction and shoot bud differentiation were both achieved on half Murashige and Skoog basal medium supplemented with 4.44 µM 6-Benzylaminopurine and 1.08 µM 1-Naphthaleneacetic acid. The best rooting was achieved from 30 days old, regenerated shoots on half Murashige and Skoog basal medium supplemented with 1.08 µM 1-Naphthaleneacetic acid. Micropropagated plants were subjected to inter simple sequence repeat markers analyses. Collectively, 86 bands were generated from 6 primers of which 12 bands were polymorphic, showing genetic variation between the regenerated plantlets and the original plant. Response to plant growth regulators was more specific than most other studies using South American species, which could be explained by the morphological and physiological differences between South American and Asian Passiflora species


Author(s):  
Ileana MICLEA ◽  
Rita BERNAT

The aim of the current research was to find the best plant growth regulators for the multiplication of Sarracenia purpurea. Murashige and Skoog medium (MS) was prepared with macronutrients and micronutrients at 1/3 strength, full strength vitamins, supplemented with 30 g/l sucrose and 5 g/l phytagel and autoclaved. After cooling 0.5 mg\l α-naphthaleneacetic acid (NAA), 5 mg\l 6-benzyladenine (BA) or 0.5 mg\l NAA + 3 mg\l BA were added. Young S. purpurea plants were selected and transferred to media with or without plant growth regulators and cultured for 12 weeks. At the end of this time frame number of roots, root length (cm) and number of shoots were evaluated and differences were analysed by the analysis of variance and interpreted using the Tuckey test. The largest number of roots grew in medium supplemented with 0.5 mg\l NAA but the the absence of plant growth regulators increased their length. The best conditions for shoot multiplication were provided by supplementing 1/3MS with 5 mg\l BA.


2015 ◽  
Vol 5 (17) ◽  
pp. 85-95
Author(s):  
F. Ahmadloo ◽  
M. Tabari Kouchaksaraei ◽  
P. Azadi ◽  
A. Hamidi ◽  
E. Beiramizadeh ◽  
...  

2020 ◽  
Vol 19 (4) ◽  
pp. 41-51
Author(s):  
Tour Jan ◽  
Ikram Ullah ◽  
Bilal Muhammad ◽  
_ Tariq ◽  
Ali Mansoor ◽  
...  

Hyperhydricity is a frequently problem in plants during in vitro culture and affected micropropagation ofplants. To develop an efficient in vitro regenerated system without hyperdydricity, we demonstrated the effectof different disinfected agents (mercuric chlorite and hypochlorite), growth regulators, their concentrationsand combinations, Agar, pH, ammonium nitrate (NH4NO3) and number of subcultures. Mercuric chlorite at0.07% and exposing time (9–10 min) was appropriate for hygienic culture. The shoots induced by Benzyladnine(BA) alone or in combination with α-Naphthaleneacetic acid (NAA) exhibited maximum multiplicationwith symptoms of hyperhydricity than those induced by Kinetin alone or in combination with NAA. Hyperhydricitywas also reduced by increasing the concentration of agar, pH and elimination of NH4NO3 from themacroelements of Murashig and Skoog (MS) medium. Repeated subcultures affected both multiplication andhyperhydricity. The multiplication of shoots increased from parental culture up to 5th subculture and thereafterdeclined in 6th subculture. Although shoot hyperhydricity were observed from 1st subculture (19%) andthen increased up to 85% in 6th subculture. This increased in hyperhydricity could be due to the remaininginfluence of hormones. In shoots of 5th subculture the content of chlorophyll (dark green) were higher thanshoots of 6th subculture.


Sign in / Sign up

Export Citation Format

Share Document