scholarly journals Control of Guignardia citricarpa by Bacillus subtilis and Trichoderma spp.

2011 ◽  
Vol 33 (4) ◽  
pp. 1111-1118 ◽  
Author(s):  
Katia Cristina Kupper ◽  
Élida Barbosa Corrêa ◽  
Cristiane Moretto ◽  
Wagner Bettiol ◽  
Antonio de Goes

The ability of isolates of Bacillus subtilis and Trichoderma spp. to control citrus black spot (CBS) was investigated in ´Natal´ sweet orange orchards. The first experiment was conducted during the 2001/2002 season and four isolates of B. subtilis (ACB-AP3, ACB-69, ACB-72 and ACB-77), applied every 28 days, alone or in combination were tested and compared with fungicide treatments. Two other experiments were carried out during the 2002/2003 season, where the same isolates of Bacillus and two isolates of Trichoderma (ACB-14 and ACB-40) were tested being applied every 28 days in the second experiment, and every 15 days in the third experiment. In the first experiment, the treatment with ACB-69 differed statistically from the control, but did not differ from other biological control agents or mixture of Bacillus isolates. In the second experiment, the treatments with ACB-69 and ACB-AP3 resulted in smaller disease index compared with the control treatment. However, this result was not repeated in the third experiment, where the isolates were applied every 15 days. Disease severity was high in both evaluated seasons and the fungicide treatment was the most effective for disease control.

2021 ◽  
Author(s):  
Franklin Jackson Machado ◽  
Fabrício Eustáquio Lanza ◽  
Marcela Olivetti Ferretti ◽  
Régis Oliveira Fialho ◽  
Franklin Behlau ◽  
...  

Plant Disease ◽  
2012 ◽  
Vol 96 (8) ◽  
pp. 1225-1225 ◽  
Author(s):  
T. S. Schubert ◽  
M. M. Dewdney ◽  
N. A. Peres ◽  
M. E. Palm ◽  
A. Jeyaprakash ◽  
...  

In March 2010, citrus black spot symptoms were observed on sweet orange trees in a grove near Immokalee, FL. Symptoms observed on fruit included hard spot, cracked spot, and early virulent spot. Hard spot lesions were up to 5 mm, depressed with a chocolate margin and a necrotic, tan center, often with black pycnidia (140 to 200 μm) present. Cracked spot lesions were large (15 mm), dark brown, with diffuse margins and raised cracks. In some cases, hard spots formed in the center of lesions. Early virulent spot lesions were small (up to 7 mm long), bright red, irregular, indented, and often with many pycnidia. In addition, small (2 to 3 mm), elliptical, reddish brown leaf lesions with depressed tan centers were observed on some trees with symptomatic fruit. Chlorotic halos appeared as they aged. Most leaves had single lesions, occasionally up to four per leaf. Tissue pieces from hard spots and early virulent spots were placed aseptically on potato dextrose agar (PDA), oatmeal agar, or carrot agar and incubated with 12 h of light and dark at 24°C. Cultures that grew colonies within a week were discarded. Fourteen single-spore cultures were obtained from the isolates that grew slower than the Guignardia mangiferae reference cultures, although pycnidia formed more rapidly in the G. mangiferae cultures (1). No sexual structures were observed. Cultures on half-PDA were black and cordlike with irregular margins with numerous pycnidia, often bearing white cirrhi after 14 days. Conidia (7.1 to 7.8 × 10.3 to 11.8 μm) were hyaline, aseptate, multiguttulate, ovoid with a flattened base surrounded by a hyaline matrix (0.4 to 0.6 μm) and a hyaline appendage on the rounded apex, corresponding to published descriptions of G. citricarpa (anomorph Phyllosticta citricarpa) (1). A yellow pigment was seen in oatmeal agar surrounding G. citricarpa, but not G. mangiferae colonies as previously reported (1,2). DNA was extracted from lesions and cultures and amplified with species-specific primers (2). DNA was also extracted from G. mangiferae and healthy citrus fruit. The G. citricarpa-specific primers produced a 300-bp band from fruit lesions and pure cultures. G. mangiferae-specific primers produced 290-bp bands with DNA from G. mangiferae cultures. The internally transcribed spacer (ITS) of the rRNA gene, translation-elongation factor (TEF), and actin gene regions were sequenced from G. citricarpa isolates and deposited in GenBank. These sequences had 100% homology with G. citricarpa ITS sequences from South Africa and Brazil, 100% homology with TEF, and 99% homology with actin of a Brazilian isolate. Pathogenicity tests with G. citricarpa were not done because the organism infects immature fruit and has an incubation period of at least 6 months (3). In addition, quarantine restrictions limit work with the organism outside a contained facility. To our knowledge, this is the first report of black spot in North America. The initial infested area was ~57 km2. The disease is of great importance to the Florida citrus industry because it causes serious blemishes and significant yield reduction, especially on the most commonly grown ‘Valencia’ sweet orange. Also, the presence of the disease in Florida may affect market access because G. citricarpa is considered a quarantine pathogen by the United States and internationally. References: (1) R. P. Baayen et al. Phytopathology 92:464, 2002. (2) N. A. Peres et al. Plant Dis. 91:525, 2007 (3) R. F. Reis et al. Fitopath Bras. 31:29, 2006.


2021 ◽  
Author(s):  
Geraldo José Silva Júnior ◽  
Mario Roberto Moraes ◽  
Rafaele Regina Moreira ◽  
Franklin Behlau

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Ester Wickert ◽  
Antonio de Goes ◽  
Andressa de Souza ◽  
Eliana Gertrudes de Macedo Lemos

One of the most important diseases that affect sweet orange orchards in Brazil is the Citrus Black Spot that is caused by the fungusGuignardia citricarpa. This disease causes irreparable losses due to the premature falling of fruit, as well as its severe effects on the epidermis of ripe fruit that renders them unacceptable at the fresh fruit markets. Despite the fact that the fungus and the disease are well studied, little is known about the genetic diversity and the structure of the fungi populations in Brazilian orchards. The objective of this work was study the genetic diversity and population differentiation ofG. citricarpaassociated with four sweet orange varieties in two geographic locations using DNA sequence of ITS1-5.8S-ITS2 region from fungi isolates. We observed that different populations are closely related and present little genetic structure according to varieties and geographic places with the highest genetic diversity distributed among isolates of the same populations. The same haplotypes were sampled in different populations from the same and different orange varieties and from similar and different origins. If new and pathogenic fungi would become resistant to fungicides, the observed genetic structure could rapidly spread this new form from one population to others.


EDIS ◽  
2009 ◽  
Vol 2009 (4) ◽  
Author(s):  
Megan M. Dewdney ◽  
Jamie D. Burrow (Yates) ◽  
Michael E. Rogers ◽  
Timothy M. Spann

PP264, a 2-page ID sheet by M.M. Dewdney, J.D. Burrow (Yates), M.E. Rogers, and T.M. Spann, provides images for identification and a comparison chart for Citrus Variegated Chlorosis (CVC), Leprosis, Citrus Black Spot, Sweet Orange Scab (SOS), and Citrus Tristeza Stem-Pitting (CTV-SP). Published by the UF Department of Plant Pathology, April 2009. PP264/PP264: Exotic Diseases of Citrus (ufl.edu)  


Plant Disease ◽  
1997 ◽  
Vol 81 (5) ◽  
pp. 455-459 ◽  
Author(s):  
L. Korsten ◽  
E. E. De Villiers ◽  
F. C. Wehner ◽  
J. M. Kotzé

In 3 consecutive years, preharvest applications of Bacillus subtilis field sprays integrated with copper oxychloride or benomyl consistently reduced severity of avocado black spot (BS), caused by Pseudocercospora purpurea at Omega, Republic of South Africa. Control was equal to that obtained with copper oxychloride or benomyl-copper oxychloride in the first and third years of spraying at Omega. In the second year, only the integrated treatment controlled BS, while copper oxychloride proved ineffective. The antagonist was applied on its own or integrated with copper oxychloride sprays at two other geographically distinct locations, Westfalia Estate and Waterval. The integrated and biological treatments at these localities were less effective than copper oxychloride sprays in controlling BS disease. Integrated control was more effective than B. subtilis sprays at Westfalia. On continuation of the biological spray program at Waterval for an additional three seasons, control was as effective as copper oxychloride in the last 2 years of spraying. Sooty blotch (SB), caused by an Akaropeltopsis sp., was reduced by the integrated treatment at Omega during the second season and at Westfalia during the first season. Although the two fungicide treatments reduced SB at Omega in the first season, copper oxychloride increased it above that of the control in the third season. Only the copper oxychloride treatment reduced SB at Waterval in the third season, while the B. subtilis treatment increased disease above that of the control in the fourth season.


Plant Disease ◽  
2019 ◽  
Vol 103 (5) ◽  
pp. 913-921 ◽  
Author(s):  
Guilherme F. Frare ◽  
Geraldo J. Silva-Junior ◽  
Fabrício E. Lanza ◽  
Renato B. Bassanezi ◽  
Thiago G. Ramires ◽  
...  

Citrus black spot (CBS), caused by Phyllosticta citricarpa, affects different citrus species worldwide. CBS is mainly expressed as false melanose and hard spot symptoms. There is no consensus in the literature about the period when fruit are susceptible to P. citricarpa infection and the length of the CBS incubation period. Therefore, this study aimed to assess the influence of sweet orange variety, fruit age, and inoculum concentration on the incubation period and the expression of different CBS symptoms. Attached fruit of Hamlin, Pera, and Valencia sweet orange at 1.5, 3.0, 5.0, and 7.0 cm diameter were inoculated with suspensions containing 103 and 105 conidia/ml of P. citricarpa. The percent conidial germination was quantified using scanning electron microscopy. The CBS symptoms on fruit were assessed monthly. The four diameters did not significantly affect conidial germination on the inoculated fruit, although CBS incidences were lower when larger fruit were inoculated. Hard spot symptoms on sweet orange fruit did not develop from the false melanose symptoms and vice versa. The incubation periods for false melanose were shorter than those observed for hard spot. False melanose began to appear 44 days after inoculation, but hard spot only formed at 113 days or later. Incubation periods were shorter and incidences of false melanose were higher following inoculation with higher inoculum concentration and smaller fruit diameter. The incubation period of hard spot varied among varieties and fruit diameters. However, there was no relationship between hard spot incidence and variety. This study provides a better understanding of the factors affecting the variation in the CBS incubation period and disease incidence on fruit.


2013 ◽  
Vol 35 (1) ◽  
pp. 102-111 ◽  
Author(s):  
José Antonio Miranda Bellotte ◽  
Katia Cristina Kupper ◽  
Davi Rinaldo ◽  
Andressa de Souza ◽  
Antonio de Goes

This study highlighted the effect of planting coast-cross grass and forage peanut cv. Amarilis between rows of Natal oranges on spreading of Guignardia citricarpa ascospores and consequent citrus black spot control. Treatments evaluated were: 1- conventional cultivation, free of fungicides; 2- conventional cultivation, using protective fungicides; 3- inter-crop cultivation of coast-cross grass between rows of citrus crops and; 4- inter-cropping cultivation of forage peanut between the rows of citrus crops. Quest Volumetric Spore SystemTM traps were set in order to determine the number of ascospores released. A total of 33 inspections were conducted weekly, from the end of August until early September the following year. A diagrammatic scale was used to determine the severity of the disease as well as the percentage of fruits having a commercial standard. The coast-cross grass was more effective in reducing the number of ascospores produced, whose average statistics were lower than in the conventional treatments, free-fungicides. The inter-crop and conventional cultivation method coupled with fungicide treatment was more effective in reducing the severity of citrus black spot symptoms, and differs statistically from the fungicide-free control method. These methods also resulted in a higher percentage of fruits of a commercial standard, ranging from the 89% through the 91% percentile, and the cultivation, free of fungicides, fell within the 73%.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1455
Author(s):  
Concepció Moragrega ◽  
Alba Carmona ◽  
Isidre Llorente

Trials under controlled and field conditions were conducted to establish the effect of strategies of application of biological control agents (BCAs) in the reduction of Stemphylium vesicarium and Pleospora allii inoculum production on pear leaf debris. Six BCAs based on different strains of Trichoderma spp. (Tr1, Tr2) and Bacillus subtilis (Bs1, Bs2, Bs3 and Bs4) were evaluated. Two strategies were tested in controlled experiments: application before (preventative strategy) or after (curative strategy) pear leaf debris colonization by S. vesicarium, evaluating the growth inhibition and sporulation of S. vesicarium and the pseudothecia production of P. allii. When the BCAs were applied preventatively, the efficacy of treatments based on B. subtilis was higher than those based on Trichoderma spp. in controlling the pathogen colonization, but that of controlling the inoculum production of S. vesicarium and P. allii was similar. However, when the BCAs were applied curatively, Trichoderma based products were more effective. In field trials, Trichoderma spp. Tr1 and B. subtlilis Bs1 produced a consistent 45–50% decrease in the number of S. vesicarium conidia trapped compared to the non-treated control. We conclude that Bacillus subtilis Bs1 and Trichoderma spp. Tr1 and Tr2 can be expected to reduce fungal inoculum during the pear vegetative period by at least 45–50%. Additionally, Trichoderma spp. Tr1 and Tr2 have the potential to reduce the fungal overwintering inoculum by 80% to 90%.


Sign in / Sign up

Export Citation Format

Share Document