scholarly journals Crop coefficient and water consumption of eggplant in no-tillage system and conventional soil preparation

2012 ◽  
Vol 32 (4) ◽  
pp. 784-793 ◽  
Author(s):  
Daniel F. de Carvalho ◽  
Marcio E. de Lima ◽  
Alexsandra D. de Oliveira ◽  
Hermes S. da Rocha ◽  
José G. M. Guerra

Under organic management in Seropédica-RJ, Brazil, using a weighing lysimeter, the crop coefficients (kc), the maximum evapotranspiration and the productivity of eggplant cultivation under two cropping systems (no tillage with straw plus soil with conventional preparation) were determined. A whole randomized layout with two treatments (no tillage and conventional) and five replicates during 134 days of cultivation were adopted. There were no significant differences in the eggplant cultivation in the two cropping systems, with a maximum commercial productivity obtained from 47.42 Mg ha-1 for the no-tillage system, and 47.91 Mg ha-1 for the conventional tillage. The accumulated ETc was 285.15 and 323.44 mm for the no-tillage and conventional, respectively. The crop coefficients value for the phases: 1 - transplanting, flowering, 2 - flowering-fruiting, 3 - fruit- first harvesting, 4- first harvesting of the final crop cycle was 0.83, 0.77, 0.90 and 0.97 in no-tillage system for the respective phases and for the conventional one 0.81, 1.14, 1.17 and 1.05 for the same steps described above.

2010 ◽  
Vol 45 (12) ◽  
pp. 1331-1341 ◽  
Author(s):  
Homero Bergamaschi ◽  
Genei Antonio Dalmago ◽  
João Ito Bergonci ◽  
Cleusa Adriane Menegassi Bianchi Krüger ◽  
Bruna Maria Machado Heckler ◽  
...  

The objective of this work was to evaluate changes in the photosynthetic photon flux density (PPFD) interception efficiency and PPFD extinction coefficient for maize crop subjected to different soil tillage systems and water availability levels. Crops were subjected to no-tillage and conventional tillage systems combined with full irrigation and non-irrigation treatments. Continuous measurements of transmitted PPFD on the soil surface and incoming PPFD over the canopy were taken throughout the crop cycle. Leaf area index and soil water potential were also measured during the whole period. Considering a mean value over the maize cycle, intercepted PPFD was higher in the conventional tillage than in the no-tillage system. During the initial stages of plants, intercepted PPFD in the conventional tillage was double the PPFD interception in the no-tillage treatment. However, those differences were reduced up to the maximum leaf area index, close to tasseling stage. The lowest interception of PPFD occurred in the conventional tillage during the reproductive period, as leaf senescence progressed. Over the entire crop cycle, the interception of PPFD by the non-irrigated plants was about 20% lower than by the irrigated plants. The no-tillage system reduced the extinction coefficient for PPFD, which may have allowed a higher penetration of solar radiation into the canopy


2020 ◽  
Vol 87 ◽  
Author(s):  
Djavan Pinheiro Santos ◽  
Robélio Leandro Marchão ◽  
Ronny Sobreira Barbosa ◽  
Juvenal Pereira da Silva Junior ◽  
Everaldo Moreira da Silva ◽  
...  

ABSTRACT: The soil macrofauna is fundamental for the maintenance of soil quality. The aim of this study was to characterize the soil macrofauna under different species of cover crops, including monoculture or intercropping associated to two types of soil management in the southwest region of Piauí state. The study was carried out in an Oxisol (Latossolo Amarelo, according to Brazilian Soil Classification System) in the municipality of Bom Jesus, Piauí, distributed in 30 m2 plots. Testing and evaluation of the soil macrofauna were conducted in a 9 × 2 strip factorial design, with combinations between cover crops/consortia and soil management (with or without tillage), with four replications. Soil monoliths (0.25 × 0.25 m) were randomly sampled in each plot for macrofauna at 0‒0.1, 0.1‒0.2, and 0.2‒0.3 m depth, including surface litter. After identification and counting of soil organims, the relative density of each taxon in each depth was determined. The total abundance of soil macrofauna quantified under cover crops in the conventional and no-tillage system was 2,408 ind. m-2, distributed in 6 classes, 16 orders, and 31 families. The results of multivariate analysis show that grass species in sole cropping systems and no-tillage presents higher macrofauna density, in particular the taxonomic group Isoptera. No-tillage also provided higher richness of families, where Coleoptera adult were the second more abundant group in no-tillage and Hemiptera in conventional tillage.


2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Blessing Mhlanga ◽  
Laura Ercoli ◽  
Elisa Pellegrino ◽  
Andrea Onofri ◽  
Christian Thierfelder

AbstractConservation agriculture has been promoted to sustainably intensify food production in smallholder farming systems in southern Africa. However, farmers have rarely fully implemented all its components, resulting in different combinations of no-tillage, crop rotation, and permanent soil cover being practiced, thus resulting in variable yield responses depending on climatic and soil conditions. Therefore, it is crucial to assess the effect of conservation agriculture components on yield stability. We hypothesized that the use of all three conservation agriculture components would perform the best, resulting in more stable production in all environments. We evaluated at, eight trial locations across southern Africa, how partial and full implementation of these components affected crop yield and yield stability compared with conventional tillage alone or combined with mulching and/or crop rotation. Grain yield and shoot biomass of maize and cowpea were recorded along with precipitation for 2 to 5 years. Across different environments, the addition of crop rotation and mulch to no-tillage increased maize grain by 6%, and the same practices added to conventional tillage led to 13% yield increase. Conversely, adding only mulch or crop rotation to no-tillage or conventional tillage led to lower or equal maize yield. Stability analyses based on Shukla’s index showed for the first time that the most stable systems are those in which mulch is added without crop rotation. Moreover, the highest yielding systems were the least stable. Finally, additive main effects and multiplicative interaction analysis allowed clarifying that mulch added to no-tillage gives stable yields on sandy soil with high rainfall. Similarly, mulch added to conventional tillage gives stable yield on sandy soil, but under low rainfall. This is the first study that highlighted the crucial role of mulch to enhance the stability and resilience of cropping systems in southern Africa, supporting their adaptability to climate change.


2009 ◽  
Vol 44 (8) ◽  
pp. 949-953 ◽  
Author(s):  
Cécile Villenave ◽  
Bodovololona Rabary ◽  
Jean-Luc Chotte ◽  
Eric Blanchart ◽  
Djibril Djigal

The objective of this work was to assess the effects of conventional tillage and of different direct seeding mulch-based cropping systems (DMC) on soil nematofauna characteristics. The long-term field experiment was carried out in the highlands of Madagascar on an andic Dystrustept soil. Soil samples were taken once a year during three successive years (14 to 16 years after installation of the treatments) from a 0-5-cm soil layer of a conventional tillage system and of three kinds of DMC: direct seeding on mulch from rotation soybean-maize residues; direct seeding of maize-maize rotation on living mulch of silverleaf (Desmodium uncinatum); direct seeding of bean (Phaseolus vulgaris)-soybean rotation on living mulch of kikuyu grass (Pennisetum clandestinum). The samples were compared with samples from natural fallows. The soil nematofauna, characterized by the abundance of different trophic groups and indices (MI, maturity index; EI and SI, enrichment and structure indices), allowed the discrimination of the different cropping systems. The different DMC treatments had a more complex soil food web than the tillage treatment: SI and MI were significantly greater in DMC systems. Moreover, DMC with dead mulch had a lower density of free-living nematodes than DMC with living mulch, which suggested a lower microbial activity.


Nativa ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 494
Author(s):  
Carla Da Penha Simon ◽  
Edney Leandro da Vitória ◽  
Elcio Das Graça Lacerda ◽  
Yago Soares Avancini ◽  
Tatiana Fiorotti Rodrigues ◽  
...  

Objetivou-se quantificar o CO2,atributos químicos e físicos do solo são influenciados por diferentes manejos de preparo do solo. O Delineamento experimental adotado foi inteiramente casualizado, sendo os tratamentos: Sistema de Plantio Direto (SPD), Cultivo Mínimo e Preparo Convencional (PC), e como referência: área de vegetação nativa (Mata), contando com seis repetições cada variável de estudo. Além da comparação por teste médias, foi realizada uma análise exploratória das leituras nos sistemas de preparo do solo, onde o CO2 foi traduzido graficamente num diagrama o box-plot. As variáveis avaliadas foram: CO2 obtido por meio de um analisador de gás infravermelho; os atributos físicos do solo: Densidade do solo (Ds), Volume Total de Poros (VTP), Macroporosidade (Ma), Microporosidade (Mi), Resistência a Penetração do solo (RPS) e o atributo químico: carbono orgânico total (COT). O fluxo CO2 do solo apresentou diferença significativa entre o SPD e o PC; valores médios encontrados para SPD, CM, Mata e PC foram 2,30; 2,25; 2,18; e 1,39 μmolCO2m−2 s−1, respectivamente; o COT apresentou seu maior valor na área de Mata (32,95 gkg-1) diferindo estatisticamente das demais áreas. Observou-se uma menor emissão de CO2 do solo no PC, pois o sistema apresenta baixo aporte de carbono orgânico.Palavras-chave: sistema de preparo convencional; cultivo mínimo; preparo convencional; carbono orgânico total. CO2 EMISSION, PHYSICAL ATTRIBUTES AND TOTAL ORGANIC CARBON IN DIFFERENT SOIL PREPARATION SYSTEMS ABSTRACT: The objective was to quantify the CO2, chemical and physical attributes of the soil are influenced by different management of soil preparation. The experimental design was completely randomized, with the treatments: no-tillage (NT), minimum tillage (MT) and conventional tillage (CT), and as reference:  native forest (NF), with six replicates each study variable. In addition to the mean test comparison, an exploratory analysis of the readings was performed in the soil preparation systems, where CO2 was graphically translated into a box-plot diagram. The variables evaluated were: CO2 obtained by means of a infrared gas analyzer; density (Bd), total pore volume (TPV), macroporosity (Ma), microporosity (Mi), resistance to soil penetration (RSP) and chemical attribute: total organic carbon (TOC). The CO2 soil flux presented a significant difference between NT and CT; where respectively the mean values found for SPD, CM, Mata and PC were 2.30; 2.25; 2.18; and 1.39 μmolCO2m-2s-1; the COT had its highest value in the Mata area (32.95 gkg-1), differing statistically from the other areas. It was observed a lower CO2 emission of the soil in the PC, because the system has low input of organic carbon.Keywords: no-tillage; conventional tillage; minimum tillage; total organic carbon.


Irriga ◽  
2018 ◽  
Vol 21 (2) ◽  
pp. 352
Author(s):  
HIPÓLITO MURGA-ORRILLO ◽  
WELLINGTON FARIAS ARAUJO ◽  
CARLOS ABANTO RODRIGUEZ ◽  
RICARDO MANUEL BARDALES LOZANO ◽  
ROBERTO TADASHI SAKAZAKI ◽  
...  

INFLUÊNCIA DA COBERTURA MORTA NA EVAPOTRANSPIRAÇÃO, COEFICIENTE DE CULTIVO E EFICIÊNCIA DE USO DE ÁGUA DO MILHO CULTIVADO EM CERRADO HIPÓLITO MURGA-ORRILLO1; WELLINGTON FARIAS ARAÚJO2; CARLOS ABANTO-RODRIGUEZ3; ROBERTO TADASHI SAKAZAKI4; RICARDO MANUEL BARDALES-LOZANO5 E ANA ROSA POLO-VARGAS6 1Engenheiro Agrônomo, Prof. Auxiliar, Universidad Nacional Autónoma de Chota, (UNACH), Jr. Gregorio Malca Nº 875- Campus Colpa Matara, Chota, Perú. [email protected] Agrônomo, Prof. Dr. Associado da UFRR/CCA, Boa Vista, RR. [email protected] Florestal, Investigador no Instituto de Investigaciones de la Amazonía Peruana, Carretera Federico Basadre, Km 12,400, Yarinacocha, Ucayali, Perú. [email protected] Agrônomo, Doutorando na UFRR/CCA, Boa Vista, RR. [email protected] Agrônomo, Doutorando na UFRR/Bionorte, Boa Vista, RR. [email protected] Agrônoma, Graduada na Universidad Nacional de Cajamarca, (UNC), Av. Atahualpa Nº 1050- Carretera Cajamarca-Baños del Inca, Cajamarca, Perú. [email protected]  1 RESUMOA irrigação consome grande quantidade de água, sendo importante um adequado manejo da cultura para minimizar esse consumo, maximizando a produção. No intuito de obter informações para o manejo da irrigação, objetivou-se com o presente trabalho determinar a evapotranspiração da cultura (ETc), o coeficiente de cultivo (Kc) e a eficiência do uso de água (EUAg) da cultura de milho, em solo com e sem cobertura, durante os diferentes estádios de desenvolvimento, utilizando lisímetros de drenagem. O experimento foi conduzido no campus Cauamé da Universidade Federal de Roraima, entre 19/04/2014 e 07/08/2014, em Boa Vista, RR. A evapotranspiração de referência (ETo) foi estimada pelo método de Penman-Monteith FAO. Os resultados da ETc do milho, durante o ciclo da cultura, em solo sem e com cobertura foram de 421,5 e 351,0 mm, respectivamente. As médias diárias de ETc foram de 4,1 mm dia-1 para solo sem cobertura e 3,4 mm dia-1 para solo com cobertura. A cobertura do solo propiciou valores diferentes de Kc's para o milho, nos mesmos estádios, em comparação aos Kc’s do solo descoberto. Para o solo descoberto, os Kc’s observados para os estádios fenológicos I, II, III, e IV, foram de 0,40; 0,84; 1,59 e 0,81, respectivamente. Já para solo com cobertura, os Kc’s pelos mesmos estádios em menção foram 0,28; 0,64; 1,49 e 0,48, respectivamente. A EUAg para solo com cobertura foi 1,77 kg m-3 e para solo sem cobertura foi 1,65 kg m-3. Estes resultados mostram que a cobertura morta no solo influenciou no consumo hídrico do milho durante todo seu ciclo. Palavras-chave: Zea mays. Irrigação. Solo coberto. Consumo hídrico.  MURGA-ORRILLO, H.; ARAÚJO, W. F.; ABANTO-RODRIGUEZ C.; SAKAZAKI, R. T.; BARDALES-LOZANO R. M.; POLO-VARGAS, A. R.MULCH INFLUENCE ON EVAPOTRANSPIRATION, CROP COEFFICIENT AND WATER USE EFFICIENCY OF CORN GROWN IN THE SAVANNAH   2 ABSTRACTIrrigation consumes large amounts of water, and minimizing consumption and maximizing the production are  important to a proper crop management . In order to obtain information for irrigation management, the aim of the present study was to determine evapotranspiration (ETc),  crop coefficient (Kc) and  water use efficiency (WUE) of maize grown in soil with and without cover, during the various stages of development, using drainage lysimeters. The experiment was conducted in Cauamé campus of the Federal University of Roraima, from 19/04/2014 to 08/07/2014, in Boa Vista, RR. The reference evapotranspiration (ETo) was estimated by the Penman-Monteith method. The results of the corn ETc during the crop cycle in soil with and without coverage were 421.5 and 351.0 mm, respectively. The daily average of ETc were 4.1 mm day-1 for bare soil and 3.4 mm day-1 for soil with cover. The ground cover led to different values of Kc's for corn in the same stages as compared to Kc's from the bare ground. For bare soil, the Kc's observed for the phenological stages I, II, III, and IV were 0.40; 0.84; 1.59 and 0.81, respectively. As for covered soil, the Kc's in the same stadiums mentioned were 0.28; 0.64; 1.49 and 0.48, respectively. The WUE to soil with cover was 1.77 kg m-3 and ground without cover was 1.65 kg m-3. These results show that  soil mulching influenceS maize water consumption throughout its cycle. Keywords: Zea mays. Irrigation. Ground covered. Water consumption.


2015 ◽  
Vol 29 (4) ◽  
pp. 467-473 ◽  
Author(s):  
Veronica Muñoz-Romero ◽  
Luis Lopez-Bellido ◽  
Rafael J. Lopez-Bellido

Abstract Soil temperature is a factor that influences the rates of physical, chemical, and biological reactions in soils and has a strong influence on plant growth. A field study was conducted during 2006-2007 and 2009-2010 on a typical rainfed Mediterranean Vertisol to determine the effects of the tillage system and the crop on soil temperature. The experimental treatments were the tillage system (no-tillage and conventional tillage) and the crop (wheat and faba bean). Soil temperature was measured at a 20 cm depth at 1 h intervals from December 1st to November 30th of 2006-2007 and 2009-2010. There was a highly significant relationship between air temperature (both maximum and minimum) and soil temperature for the two tillage systems. Soil temperature was similar in the growing season for both crops but was higher in the conventional tillage than in the no-tillage system, with differences between 0.7 and 2.6°C depending on the month of the year. A higher soil temperature with conventional tillage can be beneficial in the cold sowing period (November-December), improving crop establishment. In contrast, in critical periods with water deficits (spring) during which grain formation occurs, the lower temperature corresponding to the no-tillage system would be more favourable.


Weed Science ◽  
1999 ◽  
Vol 47 (1) ◽  
pp. 67-73 ◽  
Author(s):  
J. Dorado ◽  
J. P. Del Monte ◽  
C. López-Fando

In a semiarid Mediterranean site in central Spain, field experiments were conducted on a Calcic Haploxeralf (noncalcic brown soil), which had been managed with three crop rotations and two tillage systems (no-tillage and conventional tillage) since 1987. The crop rotations consisted of barley→vetch, barley→sunflower, and a barley monoculture. The study took place in two growing seasons (1992–1994) to assess the effects of management practices on the weed seedbank. During this period, spring weed control was not carried out in winter crops. In the no-tillage system, there was a significant increase in the number of seeds of different weed species: anacyclus, common purslane, corn poppy, knotted hedge-parsley, mouse-ear cress, spring whitlowgrass, tumble pigweed, venus-comb, andVeronica triphyllos.Conversely, the presence of prostrate knotweed and wild radish was highest in plots under conventional tillage. These results suggest large differences in the weed seedbank as a consequence of different soil conditions among tillage systems, but also the necessity of spring weed control when a no-tillage system is used. With regard to crop rotations, the number of seeds of knotted hedge-parsley, mouse-ear cress, and spring whitlowgrass was greater in the plots under the barley→vetch rotation. Common lambsquarters dominated in the plots under the barley→sunflower rotation, whereas venus-comb was the most frequent weed in the barley monoculture. Larger and more diverse weed populations developed in the barley→vetch rotation rather than in the barley→sunflower rotation or the barley monoculture.


2020 ◽  
Vol 12 (15) ◽  
pp. 6103
Author(s):  
Ali reza Safahani Langeroodi ◽  
Roberto Mancinelli ◽  
Emanuele Radicetti

Quinoa cultivation is well-adapted to sustainable cropping systems, even if seed yield could be severely limited due to several constraints, such as weeds. Field trials were performed in Gorgan (Iran) to quantify the effects of agro-ecological service crops (rye, CCr; winter vetch, CCw; and no cover, CC0), tillage regimes (conventional tillage, CT; and no-tillage, ZT), and herbicide rates (100% rate, H100; 75% rate, H75; and without herbicide, H0). Weed characteristics and quinoa yield were measured. Quinoa seed yield was the highest in CCw-ZT-H100. Seed yield in H100 and H75 were higher compared with H0 (2.30 vs. 1.58 t ha−1, respectively). Under conventional tillage, 46% of weed seeds were observed in the 0–10 cm soil layer and 54% in 10–20 cm soil layers, respectively, while, under no-tillage, about 63% of weed seeds were located up to 10 cm of soil. Amaranthus retroflexus L. was the most abundant species. The total weed density was the lowest in CCr-ZT-H100 and tended to be higher in CC0 (30.9 plant m−2) and under CT (29.0 plant m−2). These findings indicate that cover crops have potential for managing weeds in quinoa; however, their inclusion should be supported by chemical means to maintain high seed.


2011 ◽  
Vol 48 (2) ◽  
pp. 159-175 ◽  
Author(s):  
J. KIHARA ◽  
A. BATIONO ◽  
B. WASWA ◽  
J. M. KIMETU ◽  
B. VANLAUWE ◽  
...  

SUMMARYReduced tillage is said to be one of the potential ways to reverse land degradation and ultimately increase the productivity of degrading soils of Africa. We hypothesised that crop yield following a modest application of 2 t ha−1 of crop residue in a reduced tillage system is similar to the yield obtained from a conventional tillage system, and that incorporation of legumes in a cropping system leads to greater economic benefits as opposed to a cropping system involving continuous maize. Three cropping systems (continuous maize monocropping, legume/maize intercropping and rotation) under different tillage and residue management systems were tested in sub-humid western Kenya over 10 seasons. While soybean performed equally well in both tillage systems throughout, maize yield was lower in reduced than conventional tillage during the first five seasons but no significant differences were observed after season 6. Likewise, with crop residue application, yields in conventional and reduced tillage systems are comparable after season 6. Nitrogen and phosphorus increased yield by up to 100% compared with control. Gross margins were not significantly different among the cropping systems being only 6 to 39% more in the legume–cereal systems relative to similar treatments in continuous cereal monocropping system. After 10 seasons of reduced tillage production, the economic benefits for our cropping systems are still not attractive for a switch from the conventional to reduced tillage.


Sign in / Sign up

Export Citation Format

Share Document