scholarly journals Leaching of Imidazolinones in Irrigation Systems in Rice Cultivation: Sprinkling and Flooding

2019 ◽  
Vol 37 ◽  
Author(s):  
D.B. HELGUEIRA ◽  
T.D ROSA ◽  
D.S. MOURA ◽  
L. GALON ◽  
J.J.O. PINTO

ABSTRACT: Herbicides of the imidazolinone group have been used in irrigated rice and presented a long persistence in the soil, especially in floodplain areas with a low drainage, and could cause environmental contamination. This study aims to evaluate the leaching and residual of herbicides belonging to the imidazolinone group in sprinkler and flood irrigation systems. The experiment was carried out under greenhouse conditions, with the application of the herbicides imazethapyr, imazethapyr + imazapic, and imazapyr + imazapic in soil irrigated by flooding and sprinkling. Subsequently, the soil was collected from the layers of 0-5, 5-10, 10-15, 15-20, and 20-25 cm and packed in 500 mL capacity plastic pots in order to sow tomato as a bioindicator plant of the presence of the herbicides belonging to the imidazolinones. Phytotoxicity, length, and shoot dry matter mass of tomato plants were evaluated at 10 and 20 days after emergence. The herbicides of the imidazolinone chemical group presented a high potential for leaching and persistence with effects for more than 180 days after application. Based on the symptoms presented by the sensitive crop, the degradation of imazethapyr, imazethapyr + imazapic, and imazapyr + imazapic in the 0-15 cm layers was higher in soil with sprinkler irrigation when compared to flood irrigation. Thus, non-flooded soils present a greater capacity to degrade the herbicides belonging to the imidazolinone chemical group.

Author(s):  
K.V. Ramana Rao ◽  
Suchi Gangwar ◽  
Arpna Bajpai ◽  
Ravish Keshri ◽  
Lavesh Chourasia ◽  
...  

The field experiment was conducted at Precision Farming Development Centre, Central Institute of Agricultural Engineering, Bhopal on influence of different irrigation methods in three continuous years (2010-2013) on the performance pea crop. Conventional flood irrigation, micro sprinkler and drip irrigation systems were adopted as three treatments and with seven replications in each treatment in the study. Pea (Arkel variety) crop was sown at a spacing of 45 X 10 cm. During the period of experiment flood irrigation were applied on weekly basis and micro irrigation and drip irrigation systems were operated every third day to meet the crop water requirement. The total quantity of water applied in flood, drip irrigation and micro sprinkler systems were 387.5, 244.7 and 273.5 mm respectively. Maximum crop yield was observed under micro sprinkler system (98.60 q/ha) followed by drip and conventional irrigation system. Saving of water was found better under drip irrigation over micro sprinkler irrigation system.


2018 ◽  
Vol 36 ◽  
Author(s):  
D.B. HELGUEIRA ◽  
T. D’AVILA ROSA ◽  
L. GALON ◽  
D.S. MOURA ◽  
A.T. MARTINI ◽  
...  

ABSTRACT: This study aimed to assess the efficiency and selectivity of herbicides in rice submitted to sprinkler and flood irrigation systems. The experimental design was a randomized block design arranged in a 2 × 9 factorial scheme. Factor A consisted of irrigation systems (sprinkler and flood) and Factor B consisted of herbicide treatments (T1 - control; T2 - imazethapyr + imazapic, 75 + 25 g a.i. ha-1; T3 - imazethapyr + imazapic, 150 + 50 g a.i. ha-1; T4 - imazapic + imazapyr, 73.5 + 24.5 g a.i. ha-1; T5 - imazapic + imazapyr, 147 + 49 g a.i. ha-1; T6 - imazethapyr, 106 g a.i. ha-1; T7 - imazethapyr, 212 g a.i. ha-1; T8 - sequential application of imazethapyr + imazapic, 75 + 25 g a.i. ha-1; and T9 - sequential application of imazapic + imazapyr, 73.5 + 24.5 g a.i. ha-1). The application of imazethapyr and formulated mixtures of imazethapyr + imazapic and imazapyr + imazapic provided a control higher than 97% in flood and sprinkler irrigation systems. Herbicide selectivity is not altered in the sprinkler irrigation system when compared to the flood irrigation system.


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 242 ◽  
Author(s):  
Wenzhu Yang ◽  
Yuehu Kang ◽  
Zhiwen Feng ◽  
Peng Gu ◽  
Huiyang Wen ◽  
...  

In arid and semi-arid regions, water-saving irrigation is the primary mode of local agricultural production. Since the chemical fertilizer is the principal source of nitrous oxide (N2O) emissions, we present results from a two-year (2016–2017) field experiment on a potato field to verify the general influence of water-saving irrigation on N2O emissions. A split-plot experiment was established with two irrigation systems and two fertilizer treatments, which give a total of four treatments. Two different irrigation systems were investigated: (i) flood irrigation with nitrogen fertilizer (NF-FI) combined with a control without any fertilizer (C-FI) and (ii) overhead sprinkler irrigation with a nitrogen fertilizer (NF-SI) accompanied with a control without any fertilizer (C-SI). The N2O emissions of the fertilizer treatment were greater than those of the control under each irrigation system. In plots where the fertilizers were applied, using overhead sprinkler irrigation reduced the average cumulative N2O emissions between 40.72% and 59.65% compared with flood irrigation. This was mainly due to the lower amount of water applied and the lower availability of NO3−-N and NH4+-N of soil associated with an overhead sprinkler irrigation. This work shows that the overhead sprinkler irrigation is an effective strategy to use to save water and mitigate emissions of the atmospheric pollutants N2O in comparison to flood irrigation.


2018 ◽  
Vol 31 (2) ◽  
pp. 370-378
Author(s):  
JÚLIO JUSTINO DE ARAÚJO ◽  
VANDER MENDONÇA ◽  
MARIA FRANCISCA SOARES PEREIRA ◽  
MATHEUS DE FREITAS SOUZA

ABSTRACT The banana tree is grown in an extensive tropical region throughout the world, usually by small producers. The present work had the objective of evaluating irrigation systems in banana production in the Açu-RN Valley, aiming at alternatives so that they can be recommended to farmers in the Açu Valley region. The experiment was carried out in the area of the School Farm of the IFRN Campus Ipanguaçu, located in the municipality of Ipanguaçu-RN. The experiment was carried out in a randomized complete block design with subdivided plots and eight replications. The irrigation systems were: irrigation, drip irrigation, micro sprinkler and alternative irrigation. The plots were composed of eight useful plants with spacing in double rows 4 x 2 x 2 m. Eight characteristics related to production were evaluated: bunch mass (MC); number of leaves (NP); number of fruits per cluster (NFC); mean mass of the leaves (MMP); diameter of the fruit of the second seed (DF2P); length of the fruit of the second seed (CF2P); mean fruit mass (MMF); productivity (Prod). The data were submitted to analysis of variance and the means were compared by the Tukey test at 5% of probability. In the first cycle of production the sprinkler irrigation system was the one that presented better results the productivity of the Pacovan banana tree; in the 3rd cycle the alternative irrigation system was the one that showed better results the productivity of the banana tree; where the electrical conductivity correlated with the sodium adsorption ratio in the irrigation water, contributed to a moderate limitation of use.


jpa ◽  
1988 ◽  
Vol 1 (3) ◽  
pp. 196-201 ◽  
Author(s):  
R. W. Elmore ◽  
D. E. Eisenhauer ◽  
J. E. Specht ◽  
J. H. Williams

1974 ◽  
Vol 17 (6) ◽  
pp. 1020-1024
Author(s):  
G. J. Hermann ◽  
G. M. McMaster ◽  
D. W. Fitzsimmons

Sign in / Sign up

Export Citation Format

Share Document