scholarly journals Phenotype and genotype correlation of the microconversion from the CYP21A1P to the CYP21A2 gene in congenital adrenal hyperplasia

2003 ◽  
Vol 36 (10) ◽  
pp. 1311-1318 ◽  
Author(s):  
N. Torres ◽  
M.P. Mello ◽  
C.M.R. Germano ◽  
L.L.K. Elias ◽  
A.C. Moreira ◽  
...  
2017 ◽  
Vol 4 (S) ◽  
pp. 129
Author(s):  
Vu Chi Dung ◽  
Ngoc Lan Nguyen ◽  
Huy Hoang Nguyen ◽  
Thi Kim Lien Nguyen ◽  
Thinh Huy Tran ◽  
...  

Inactivating mutations in the CYP21A2 gene which encodes the protein involved in steroid synthesis have been reported in the patients with congenital adrenal hyperplasia (CAH). An infant who diagnosed with the severe phenotype of CAH such as increasing testicular volume, elevating of 17-hydroxyprogesteron, testosterone and progesterone and his family were subjected for genetic studies. Initially, we used PCR and direct sequencing to screen mutations in the CYP21 gene in the proband and his family. We identified a novel nonsense mutation c.374C>G predicts a substitution of serine for a stop codon at codon 125 (p.S125*) within exon 3 in the proband. However, the inheritance pattern of the mutation was not consistent with disease causation because of a heterozygous mutation carrier in father and sibling, wild-type alleles in mother but mutant alleles in proband. This inspired us to find deletions of exon using multiplex ligation-dependent probe amplification (MLPA) assay. In the profiles of MLPA electropherogram, the proband had a large deletion in exon 3, but his mother did not have. It means that the proband inherited a normal allele from his mother and a mutant allele from his father, but the deletion of a normal allele occurred in the proband. Therefore, mutation c.374C>G (p.S125*) in exon 3 in the proband is considered as a heterozygous deletion mutation. In addition, a large deletion in exon 1 in the maternal allele in the proband is observed. Taking together, the proband carried a nonsense mutation accompanied with two deletions in exon 1 and exon 3 in the CYP21A2 gene affect the CAH phenotype severity. These mutations also expand the CYP21A2 mutation spectrum in CAH disorder. This case also highlights the need of caution when interpreting results of molecular genetics and biochemical testing during genetic counseling.


Author(s):  
Ruqayah G. Y. Al-Obaidi ◽  
Bassam M. S. Al-Musawi ◽  
Munib Ahmed K. AlZubaidi ◽  
Christian Oberkanins ◽  
Stefan Németh ◽  
...  

2018 ◽  
Vol 89 (5) ◽  
pp. 352-361 ◽  
Author(s):  
Walter L. Miller ◽  
Deborah P. Merke

Mutations of the CYP21A2 gene encoding adrenal 21-hydroxylase cause congenital adrenal hyperplasia (CAH). The CYP21A2 gene is partially overlapped by the TNXB gene, which encodes an extracellular matrix protein called Tenascin-X (TNX). Mutations affecting both alleles of TNXB cause a severe, autosomal recessive form of Ehlers-Danlos syndrome (EDS). Rarely, patients with severe, salt-wasting CAH have deletions of CYP21A2 that extend into TNXB, resulting in a “contiguous gene syndrome” consisting of CAH and EDS. Heterozygosity for TNXB mutations causing haploinsufficiency of TNX may be associated with the mild “hypermobility form” of EDS, which principally affects small and large joints. Studies of patients with salt-wasting CAH found that up to 10% had clinical features of EDS, associated joint hypermobility, haploinsufficiency of TNX and heterozygosity for TNXB mutations, now called “CAH-X.” These patients have joint hypermobility and a spectrum of other comorbidities associated with their connective tissue disorder, including chronic arthralgia, joint subluxations, hernias, and cardiac defects. Other disorders are beginning to be associated with TNX deficiency, including familial vesicoureteral reflux and neurologic disorders. Further work is needed to delineate the full spectrum of TNX-deficient disorders, with and without associated CAH.


Endocrine ◽  
2019 ◽  
Vol 67 (1) ◽  
pp. 258-263
Author(s):  
Eugenio Arteaga ◽  
Felipe Valenzuela ◽  
Carlos F. Lagos ◽  
Marcela Lagos ◽  
Alejandra Martinez ◽  
...  

Genetika ◽  
2017 ◽  
Vol 49 (2) ◽  
pp. 457-467 ◽  
Author(s):  
Milena Ugrin ◽  
Iva Milacic ◽  
Anita Skakic ◽  
Kristel Klaassen ◽  
Jovana Komazec ◽  
...  

Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is one of the most common endocrine diseases, yet genetic diagnosis is among the most complicated of all monogenic disorders. It has an overall incidence of 1:10000-1:20000, it is inherited in autosomal recessive pattern and caused by mutations affecting CYP21A2 gene. Based on the phenotypic expression, this disease is categorized into severe, classical form revealed at birth and mild, non-classical form. Although diagnosis could be established based on biochemical tests and distinctive clinical features, molecular genetic testing is crucial for diagnosis confirmation, detection of carriers and asymptomatic patients, disease prognosis, as well as for providing proper genetic counselling and prenatal diagnosis. Based on CYP21A2 mutational spectrum and frequencies in Serbia, in this paper we propose an optimal molecular genetic diagnostic algorithm for CAH and discuss genetic mechanisms underlying the disease. The complete diagnostic procedure combines multiplex minisequencing technique (SNaPshot PCR) as a method for rapid detection of common point mutations, direct sequencing of whole CYP21A2 gene and PCR with sequence specific primers (PCR-SSP) for large gene rearrangements detection (CYP21A1P/CYP21A2 chimeras). While SNaPshot PCR assay analyses ten common mutations (c.290-13A/C>G, p.P30L, p.R356W, p.G110fs, p.V281L, p.Q318X, p.L307fs, p.I172N, Cluster p.[I236N;V237E;M239K] and p.P453S) which account for over 80% of all CYP21A2 mutations in Serbian population, direct sequencing of CYP21A2 gene is needed to identify potential rare or novel mutations present in Serbian population with frequency of 1.8%. Additionally, large gene rearrangements which are present with frequency of 16.7% make PCR-SSP analysis an unavoidable part of molecular characterization of CAH in Serbia. Described molecular genetic strategy is intended to facilitate correct diagnosis assessment in CAH affected individuals and their families in Serbia but it will also contribute to molecular genetic testing of CAH patients across Europe.


2020 ◽  
Vol 2 (1) ◽  
pp. 1-10
Author(s):  
Bakhtiyar MAMMADOV ◽  
Aysel KALAYCI YİĞİN ◽  
Filiz ÖZDEMİR ◽  
Ahmet ÖZAYDIN ◽  
Mehmet SEVEN

Author(s):  
Berta Carvalho ◽  
C.Joana Marques ◽  
Rita Santos-Silva ◽  
Manuel Fontoura ◽  
Davide Carvalho ◽  
...  

AbstractCongenital Adrenal Hyperplasia is a group of genetic autosomal recessive disorders that affects adrenal steroidogenesis in the adrenal cortex. One of the most common defects associated with Congenital Adrenal Hyperplasia is the deficiency of 21-hydroxylase enzyme, responsible for the conversion of 17-hydroxyprogesterone to 11-deoxycortisol and progesterone to deoxycorticosterone. The impairment of cortisol and aldosterone production is directly related to the clinical form of the disease that ranges from classic or severe to non-classic or mild late onset. The deficiency of 21-hydroxylase enzyme results from pathogenic variants on CYP21A2 gene that, in the majority of the cases, compromise enzymatic activity and are strongly correlated with the clinical severity of the disease. Due to the exceptionally high homology and proximity between the gene and the pseudogene, more than 90% of pathogenic variants result from intergenic recombination. Around 75% are deleterious variants transferred from the pseudogene by gene conversion, during mitosis. About 20% are due to unequal crossing over during meiosis and lead to duplications or deletions on CYP21A2 gene. Molecular genetic analysis of CYP21A2 variants is of major importance for confirmation of clinical diagnosis, predicting prognosis and for an appropriate genetic counselling. In this review we will present an update on the genetic analysis of CYP21A2 gene variants in CAH patients performed in our department.


2020 ◽  
Vol 4 (8) ◽  
Author(s):  
Stanley M Chen Cardenas ◽  
Samer El-Kaissi ◽  
Ola Jarad ◽  
Muneezeh Liaqat ◽  
Márta Korbonits ◽  
...  

Abstract The contiguous gene deletion syndrome of congenital adrenal hyperplasia and Ehlers-Danlos syndrome, named CAH-X, is a rare entity that occurs because of a deletion of a chromosomal area containing 2 neighboring genes, TNXB and CYP21A. Here, we describe a patient from a consanguineous family in which coincidentally MEN-1 syndrome is associated with CAH-X, causing particular challenges explaining the phenotypic features of the patient. A 33-year-old man with salt-wasting congenital adrenal hyperplasia and classic-like Ehlers-Danlos syndrome presented with an adrenal crisis with a history of recurrent hypoglycemia, abdominal pain, and vomiting. He was found to have primary hyperparathyroidism, hyperprolactinemia, and pancreatic neuroendocrine tumors, as well as primary hypogonadism, large adrenal myelolipomas, and low bone mineral density. A bladder diverticulum was incidentally found. Genetic analysis revealed a heterozygous previously well-described MEN1 mutation (c.784-9G > A), a homozygous complete deletion of CYP21A2 (c.1-?_1488+? del), as well as a large deletion of the neighboring TNXB gene (c.11381-?_11524+?). The deletion includes the complete CYP21A2 gene and exons 35 through 44 of the TNXB gene. CGH array found 12% homozygosity over the whole genome. This rare case illustrates a complex clinical scenario with some initial diagnostic challenges.


2009 ◽  
Vol 410 (1-2) ◽  
pp. 48-53 ◽  
Author(s):  
Li-Ping Tsai ◽  
Ching-Feng Cheng ◽  
Jo-Ping Hsieh ◽  
Ming-sheng Teng ◽  
Hsien-Hsiung Lee

Sign in / Sign up

Export Citation Format

Share Document