scholarly journals Modeling the relation between CCN and the vertical evolution of cloud drop size distribution in convective clouds with parcel model

2007 ◽  
Vol 22 (3) ◽  
pp. 313-321
Author(s):  
Gérson Paiva Almeida ◽  
Rômulo Rodrigues dos Santos

In this work we use values of effective radius of cloud drop size distribution and modal radius of liquid water content generated with a parcel model with detailed treatment of liquid phase microphysical process to evaluate the warm rain formation suppression over the Amazon due to the presence of aerosols generated by forest burning. Four cases based on observations are simulated: a clean marine environment as the one observed close to Fortaleza; a clean environment as the ones observed over the apparently unpolluted Amazon forest; a environment observed during the intense burning season in the polluted part of the Amazon; and the same polluted environment observed during the transition season from dry to wet. It is shown that the model reproduces quantitatively some of the observed features of clouds in different environments. The model indicated that in very polluted environment the warm rain formation process can be completely suppressed. Nevertheless, in certain situations the formation of warm rain can still be achieved and significant amount of rainwater can be formed.

2008 ◽  
Vol 65 (6) ◽  
pp. 1795-1816 ◽  
Author(s):  
Charmaine N. Franklin

Abstract A warm rain parameterization has been developed by solving the stochastic collection equation with the use of turbulent collision kernels. The resulting parameterizations for the processes of autoconversion, accretion, and self-collection are functions of the turbulent intensity of the flow and are applicable to turbulent cloud conditions ranging in dissipation rates of turbulent kinetic energy from 100 to 1500 cm2 s−3. Turbulence has a significant effect on the acceleration of the drop size distribution and can reduce the time to the formation of raindrops. When the stochastic collection equation is solved with the gravitational collision kernel for an initial distribution with a liquid water content of 1 g m−3 and 240 drops cm−3 with a mean volume radius of 10 μm, the amount of mass that is transferred to drop sizes greater than 40 μm in radius after 20 min is 0.9% of the total mass. When the stochastic collection equation is solved with a turbulent collision kernel for collector drops in the range of 10–30 μm with a dissipation rate of turbulent kinetic energy equal to 100 cm2 s−3, this percentage increases to 21.4. Increasing the dissipation rate of turbulent kinetic energy to 500, 1000, and 1500 cm2 s−3 further increases the percentage of mass transferred to radii greater than 40 μm after 20 min to 41%, 52%, and 58%, respectively, showing a substantial acceleration of the drop size distribution when a turbulent collision kernel that includes both turbulent and gravitational forcing replaces the purely gravitational kernel. The warm rain microphysics parameterization has been developed from direct numerical simulation (DNS) results that are characterized by Reynolds numbers that are orders of magnitude smaller than those of atmospheric turbulence. The uncertainty involved with the extrapolation of the results to high Reynolds numbers, the use of gravitational collision efficiencies, and the range of the droplets for which the effect of turbulence has been included should all be considered when interpreting results based on these new microphysics parameterizations.


2008 ◽  
Vol 16 ◽  
pp. 11-17 ◽  
Author(s):  
C. Caracciolo ◽  
F. Porcù ◽  
F. Prodi

Abstract. The drop size distribution (DSD) is a fundamental property of rainfall because the shape of the distribution reflects the physics of rain formation processes. Given the lack of studies on the DSD at mid-latitudes, the present work focuses on the microphysical characterization of precipitation events occurring in Italy, using two different types of disdrometer. A large number of different rain events was collected: they underwent microphysical analysis by computing the Z-R relationships, observing the average DSDs and DSD parameters, fitting the real distribution for different rainfall rate categories and applying convective (C) – stratiform (S) discrimination algorithms. A general agreement with past works at mid-latitudes is found both in the Z-R relationship and in DSD parameters. The rain distribution is well described by a gamma DSD and only in some cases (especially the light rain events) by an exponential DSD. Marked differences are observed in DSD parameters and Z-R relationships between C and S episodes. The use of disdrometers for areas covered by multiparametric radar is suggested and will be performed in the near future.


2010 ◽  
Vol 102 (3-4) ◽  
pp. 471-481 ◽  
Author(s):  
Mladjen Ćurić ◽  
Dejan Janc ◽  
Katarina Veljović

2008 ◽  
Vol 8 (6) ◽  
pp. 1661-1675 ◽  
Author(s):  
E. Freud ◽  
D. Rosenfeld ◽  
M. O. Andreae ◽  
A. A. Costa ◽  
P. Artaxo

Abstract. In-situ measurements in convective clouds (up to the freezing level) over the Amazon basin show that smoke from deforestation fires prevents clouds from precipitating until they acquire a vertical development of at least 4 km, compared to only 1–2 km in clean clouds. The average cloud depth required for the onset of warm rain increased by ~350 m for each additional 100 cloud condensation nuclei per cm3 at a super-saturation of 0.5% (CCN0.5%). In polluted clouds, the diameter of modal liquid water content grows much slower with cloud depth (at least by a factor of ~2), due to the large number of droplets that compete for available water and to the suppressed coalescence processes. Contrary to what other studies have suggested, we did not observe this effect to reach saturation at 3000 or more accumulation mode particles per cm3. The CCN0.5% concentration was found to be a very good predictor for the cloud depth required for the onset of warm precipitation and other microphysical factors, leaving only a secondary role for the updraft velocities in determining the cloud drop size distributions. The effective radius of the cloud droplets (re) was found to be a quite robust parameter for a given environment and cloud depth, showing only a small effect of partial droplet evaporation from the cloud's mixing with its drier environment. This supports one of the basic assumptions of satellite analysis of cloud microphysical processes: the ability to look at different cloud top heights in the same region and regard their re as if they had been measured inside one well developed cloud. The dependence of re on the adiabatic fraction decreased higher in the clouds, especially for cleaner conditions, and disappeared at re≥~10 μm. We propose that droplet coalescence, which is at its peak when warm rain is formed in the cloud at re=~10 μm, continues to be significant during the cloud's mixing with the entrained air, cancelling out the decrease in re due to evaporation.


Sign in / Sign up

Export Citation Format

Share Document