scholarly journals State feedback fuzzy-model-based control for Markovian jump nonlinear systems

Author(s):  
Natache S. D. Arrifano ◽  
Vilma A. Oliveira

This paper deals with the fuzzy-model-based control design for a class of Markovian jump nonlinear systems. A fuzzy system modeling is proposed to represent the dynamics of this class of systems. The structure of the fuzzy system is composed of two levels, a crisp level which describes the Markovian jumps and a fuzzy level which describes the system nonlinearities. A sufficient condition on the existence of a stochastically stabilizing controller using a Lyapunov function approach is presented. The fuzzy-model-based control design is formulated in terms of a set of linear matrix inequalities. Simulation results for a single-machine infinite-bus power system which is modeled as a Markovian jump nonlinear system in the infinite-bus voltage are presented to illustrate the applicability of the technique.

2014 ◽  
Vol 26 (2) ◽  
pp. 140-147 ◽  
Author(s):  
Motoyasu Tanaka ◽  
◽  
Hiroshi Ohtake ◽  
Kazuo Tanaka ◽  

This paper presents a simple, natural and effective framework of nonlinear systems control and its application to aerial robots. First, we present a framework of Takagi-Sugeno fuzzy model-based control and also discuss its feature. Next, a number of design problems for the control framework are formulated as numerically feasibility problems of representing in terms of linear matrix inequalities. Finally, we provide two applications of the control framework to aerial robots. The control results of aerial robots show the utility of the control framework.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Huiying Sun ◽  
Long Yan

The paper mainly investigates theH∞fuzzy control problem for a class of nonlinear discrete-time stochastic systems with Markovian jump and parametric uncertainties. The class of systems is modeled by a state space Takagi-Sugeno (T-S) fuzzy model that has linear nominal parts and norm-bounded parameter uncertainties in the state and output equations. AnH∞control design method is developed by using the Lyapunov function. The decoupling technique makes the Lyapunov matrices and the system matrices separated, which makes the control design feasible. Then, some strict linear matrix inequalities are derived on robustH∞norm conditions in which both robust stability andH∞performance are required to be achieved. Finally, a computer-simulated truck-trailer example is given to verify the feasibility and effectiveness of the proposed design method.


Sign in / Sign up

Export Citation Format

Share Document