scholarly journals Establishing management zones using soil electrical conductivity and other soil properties by the fuzzy clustering technique

2008 ◽  
Vol 65 (6) ◽  
pp. 567-573 ◽  
Author(s):  
José Paulo Molin ◽  
Cesar Nunes de Castro

The design of site-specific management zones that can successfully define uniform regions of soil fertility attributes that are of importance to crop growth is one of the most challenging steps in precision agriculture. One important method of so proceeding is based solely on crop yield stability using information from yield maps; however, it is possible to accomplish this using soil information. In this study the soil was sampled for electrical conductivity and eleven other soil properties, aiming to define uniform site-specific management zones in relation to these variables. Principal component analysis was used to group variables and fuzzy logic classification was used for clustering the transformed variables. The importance of electrical conductivity in this process was evaluated based on its correlation with soil fertility and physical attributes. The results confirmed the utility of electrical conductivity in the definition of management zones and the feasibility of the proposed method.

2013 ◽  
Vol 93 (2) ◽  
pp. 205-218 ◽  
Author(s):  
Nahuel Raúl Peralta ◽  
José Luis Costa ◽  
Mónica Balzarini ◽  
Hernán Angelini

Peralta, N. R., Costa, J. L., Balzarini, M. and Angelini, H. 2013. Delineation of management zones with measurements of soil apparent electrical conductivity in the southeastern pampas. Can. J. Soil Sci. 93: 205–218. Site-specific management demands the identification of subfield regions with homogeneous characteristics (management zones). However, determination of subfield areas is difficult because of complex correlations and spatial variability of soil properties responsible for variations in crop yields within the field. We evaluated whether apparent electrical conductivity (ECa) is a potential estimator of soil properties, and a tool for the delimitation of homogeneous zones. ECamapping of a total of 647 ha was performed in four sites of Argentinean pampas, with two fields per site composed of several soil series. Soil properties and ECawere analyzed using principal components (PC)–stepwise regression and ANOVA. The PC–stepwise regression showed that clay, soil organic matter (SOM), cation exchange capacity (CEC) and soil gravimetric water content (θg) are key loading factors, for explaining the ECa(R2≥0.50). In contrast, silt, sand, extract electrical conductivity (ECext), pH values and [Formula: see text]-N content were not able to explain the ECa. The ANOVA showed that ECameasurements successfully delimited three homogeneous soil zones associated with spatial distribution of clay, soil moisture, CEC, SOM content and pH. These results suggest that field-scale ECamaps have the potential to design sampling zones to implement site-specific management strategies.


2003 ◽  
Vol 95 (2) ◽  
pp. 303 ◽  
Author(s):  
Cinthia K. Johnson ◽  
David A. Mortensen ◽  
Brian J. Wienhold ◽  
John F. Shanahan ◽  
John W. Doran

2012 ◽  
Vol 58 (10) ◽  
pp. 1075-1090 ◽  
Author(s):  
Hou-Long Jiang ◽  
Guo-Shun Liu ◽  
Shu-Duan Liu ◽  
En-Hua Li ◽  
Rui Wang ◽  
...  

2011 ◽  
Vol 31 (5) ◽  
pp. 895-905 ◽  
Author(s):  
Grazieli Suszek ◽  
Eduardo G. de Souza ◽  
Miguel A. Uribe-Opazo ◽  
Lucia H. P. Nobrega

Through the site-specific management, the precision agriculture brings new techniques for the agricultural sector, as well as a larger detailing of the used methods and increase of the global efficiency of the system. The objective of this work was to analyze two techniques for definition of management zones using soybean yield maps, in a productive area handled with localized fertilization and other with conventional fertilization. The sampling area has 1.74 ha, with 128 plots with site-specific fertilization and 128 plots with conventional fertilization. The productivity data were normalized by two techniques (normalized and standardized equivalent productivity), being later classified in management zones. It can be concluded that the two methods of management zones definition had revealed to be efficient, presenting similarities in the data disposal. Due to the fact that the equivalent standardized productivity uses standard score, it contemplates a better statistics justification.


2012 ◽  
Vol 13 (1) ◽  
pp. 47 ◽  
Author(s):  
Mariano Córdoba ◽  
Mónica Balzarini ◽  
Cecilia Bruno ◽  
José Luis Costa

<p>El manejo sitio-específico demanda la identificación de sub-regiones homogéneas, o zonas de manejo (ZM), dentro del espacio productivo. Sin embargo, definir ZM suele ser complejo debido a que la variabilidad espacial del suelo puede depender de varias variables. La zonificación o delimitación de ZM puede realizarse utilizando una variable de suelo a la vez o considerando varias variables simultáneamente. Entre los métodos de análisis multivariado, difundido para la zonificación, se encuentra el análisis de conglomerados fuzzy k-means (KM) y el análisis de componentes principales (PCA). No obstante, como otros métodos multivariados, éstos no han sido desarrollados específicamente para datos georreferenciados. Una nueva versión del PCA, conocido como MULTISPATI-PCA (PCAe), permite contemplar la autocorrelación espacial entre datos de variables regionalizadas. El objetivo de este estudio fue proponer una nueva estrategia de análisis para la identificación de ZM, combinando la aplicación KM y PCAe sobre datos de múltiples variables de suelo. La capacidad del método propuesto se evaluó en base a la comparación de los rendimientos promedios alcanzados en cada zona delimitada, tanto para la combinación de KM con PCA, la aplicación tradicional de KM sobre las variables originales y la nueva propuesta KM-PCAe. Los resultados mostraron que KM-PCAe fue el único método que permitió distinguir zonas estadísticamente diferentes en cuanto al potencial productivo. Se concluye que la combinación propuesta constituye una herramienta importante para el mapeo de la variabilidad espacial y la identificación de ZM a partir de datos georreferenciados. </p><p> </p><p><strong>Identification of site-specific management zones from combination of soil variables</strong></p>Site-specific management demands the identification of homogeneous subfield regions within the field or management zones (MZ). However, due to the spatial variability of soil variables, determination of MZ from several variables, is often complex. Although the zonification or delimitation of MZ may be univariate, it is more appropriate to consider all variables simultaneously. Fuzzy k-means clustering (KM) and principal component analysis (PCA) are multivariate analyses that have been used for zonification. Nevertheless, PCA and KM have not been explicitly developed for georeferenced data. Novel versions of PCA, known as MULTISPATI-PCA (PCAe), incorporate spatial autocorrelation among data of neighbor sites of regionalized variables. The objective of this study was to propose a new analytical tool to identify homogeneous zones from the combination of KM and PCAe on multiple soil variable data. The performance of proposed method was assessed through comparison of the average yields obtained in each zone delimited by combination of KM with PCA, as well as KM on the original variables and the new proposed method KM-PCAe. The results showed that KM-PCAe was the only method able to identify zones statistically different in terms of production potential. PCAe and its combination with KM are useful tools to map spatial variability and to identify MZ within fields from georeferenced data.


2017 ◽  
Vol 8 (2) ◽  
pp. 590-593 ◽  
Author(s):  
A. C. C. Bernardi ◽  
G. M. Bettiol ◽  
G. G. Mazzuco ◽  
S. N. Esteves ◽  
P. P. A. Oliveira ◽  
...  

Knowledge on spatial variability of soil properties is useful for the rational use of inputs, as in the site specific application of lime and fertilizer. Crop-livestock-forest integrated systems (CLFIS) provide a strategy of sustainable agricultural production which integrates annual crops, trees and livestock activities on a same area and in the same season. Since the lime and fertilizer are key factors for the intensification of agricultural systems in acid-soil in the tropics, precision agriculture (PA) is the tool to improve the efficiency of use of these issues. The objective of this research was to map and evaluate the spatial variability of soil properties, liming and fertilizer need of a CLFIS. The field study was carried out in a 30 ha area at Embrapa Pecuária Sudeste in São Carlos, SP, Brazil. Soil samples were collected at 0–0.2 m depth, and each sample represented a paddock. The spatial variability of soil properties and site-specific liming and fertilizer needs were modeled using semi-variograms, the soil fertility information were modeled. Spatial variability soil properties and site specific liming and fertilizer need were modeled by kriging and inverse distance weighting (IDW) techniques. Another approach used was based on lime and fertilizer recommendation considering the paddocks as the minimum management unit. The results showed that geostatistics and GIS were useful tools for revealing soil spatial variability and supporting management strategies. Soil nutrients were used to classify the soil spatial distribution map and design site-specific lime and fertilizer application zones. Spatial analyses of crop needs and requirement can provide management tools for avoiding potential environmental problems, caused by unbalanced nutrient supplies.


2003 ◽  
Vol 95 (2) ◽  
pp. 303-315 ◽  
Author(s):  
Cinthia K. Johnson ◽  
David A. Mortensen ◽  
Brian J. Wienhold ◽  
John F. Shanahan ◽  
John W. Doran

2014 ◽  
Vol 34 (6) ◽  
pp. 1224-1233 ◽  
Author(s):  
Domingos S. M. Valente ◽  
Daniel M. de Queiroz ◽  
Francisco de A. de C. Pinto ◽  
Fábio L. Santos ◽  
Nerilson T. Santos

Precision agriculture based on the physical and chemical properties of soil requires dense sampling to determine the spatial variability of these properties. This dense sampling is often expensive and time-consuming. One technique used to reduce sample numbers involves defining management zones based on information collected in the field. Some researchers have demonstrated the importance of soil electrical variables in defining management zones. The objective of this study was to evaluate the relationship between the spatial variability of the apparent electrical conductivity and the soil properties in the coffee production of mountain regions. Spatial variability maps were generated using a geostatistical method. Based on the spatial variability results, a correlation analysis, using bivariate Moran's index, was done to evaluate the relationship between the apparent electrical conductivity and soil properties. The maps of potassium (K) and remaining phosphorus (P-rem) were the closest to the spatial variability pattern of the apparent electrical conductivity.


Sign in / Sign up

Export Citation Format

Share Document