scholarly journals In vivo HAPLOID INDUCTION AND EFFICIENCY OF TWO CHROMOSOME DUPLICATION PROTOCOLS IN TROPICAL MAIZE

2015 ◽  
Vol 39 (5) ◽  
pp. 435-442 ◽  
Author(s):  
Evellyn Giselly de Oliveira Couto ◽  
Édila Vilela de Resende Von Pinho ◽  
Renzo Garcia Von Pinho ◽  
Adriano Delly Veiga ◽  
Fernanda de Oliveira Bustamante ◽  
...  

ABSTRACTArtificial chromosome duplication is one of the most important process in the attainment of doubled haploids in maize. This study aimed to evaluate the induction ability of the inducer line KEMS in a tropical climate and test the efficiency of the R1-Navajo marker by flow cytometry to evaluate two chromosome duplication protocols and analyze the development of the doubled haploids in the field. To accomplish this goal, four genotypes (F1 and F2 generations) were crossed with the haploid inducer line KEMS. The seeds obtained were selected using the R1-Navajo marker and subject to two chromosome duplication protocols. Duplication was confirmed using flow cytometry. The percentages of self-fertilized plants after duplication as well as the quantities of doubled haploid seeds obtained after the self-fertilization processes were analyzed. It was observed that the germplasm influences haploid induction but not the duplication rates of the tested protocols. Protocol 2 was more efficient for the duplication of haploids, in the percentage of self-fertilized plants after duplication, and in the attainment of doubled haploid lines. Moreover, the haploid inducer line KEMS can produce haploids in a tropical climate. Other markers, in addition to the R1-Navajo system, should be used in the selection of haploid seeds.

2020 ◽  
Vol 80 (03) ◽  
Author(s):  
R. K Khulbe ◽  
A. Pattanayak ◽  
Lakshmi Kant ◽  
G. S. Bisht ◽  
M. C. Pant ◽  
...  

The use of in vivo haploid induction system makes the doubled haploid (DH) technology easier to adopt for the conventional maize breeders. However, despite having played an important role in the initial developmental phases of DH technology, Indian maize research has yet to harvest its benefits. Haploid Inducer Lines (HILs) developed by CIMMYT are being widely used in maize breeding programmes in many countries including India. There, however, is no published information on the efficiency of DH line production using CIMMYT HILs in Indian maize breeding programmes. In the present study, the efficiency of DH production using CIMMYT’s tropically adapted inducer line TAILP1 was investigated with eight source populations including two of sweet corn. The average haploid induction rate (HIR) of TAILP1 was 5.48% with a range of 2.01 to 10.03%. Efficiency of DH production ranged from 0.14 to 1.87% for different source populations with an average of 1.07%. The information generated will be useful for maize breeders intending to use DH technology for accelerated development of completely homozygous lines.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 739
Author(s):  
Chen Chen ◽  
Zijian Xiao ◽  
Junwen Zhang ◽  
Wei Li ◽  
Jinlong Li ◽  
...  

Doubled haploid technology is widely applied in maize. The haploid inducer lines play critical roles in doubled haploid breeding. We report the development of specialized haploid inducer lines that enhance the purple pigmentation of crossing immature embryos. During the development of haploid inducer lines, two breeding populations derived from the CAU3/S23 and CAU5/S23 were used. Molecular marker-assisted selection for both qhir1 and qhir8 was used from BC1F1 to BC1F4. Evaluation of the candidate individuals in each generation was carried out by pollinating to the tester of ZD958. Individuals with fast and clear pigmentation of the crossing immature embryos, high number of haploids per ear, and high haploid induction rate were considered as candidates. Finally, three new haploid inducer lines (CS1, CS2, and CS3) were developed. The first two (CS1 and CS2) were from the CAU3/S23, with a haploid induction rate of 8.29%–13.25% and 11.54%–15.54%, respectively. Meanwhile, the CS3 was from the CAU5/S23. Its haploid induction rate was 8.14%–12.28%. In comparison with the donor haploid inducer lines, the 24-h purple embryo rates of the newly developed haploid inducer lines were improved by 10%–20%, with a ~90% accuracy for the identification of haploid immature embryos. These new haploid inducer lines will further improve the efficiency of doubled haploid breeding of maize.


2021 ◽  
pp. 1-10
Author(s):  
Sourbh Kumar ◽  
Uttam Chandel ◽  
Satish Kumar Guleria

Abstract An investigation to optimize the protocol for application of colchicine for enhancing the doubled haploid production in maize was done. 106 maize genotypes were used as maternal parents, whereas, pollen source involved tropically adopted haploid inducer (TAIL P1 and TAIL hybrid). After the elimination of chromosomes of inducer lines, haploid seeds were obtained from the crosses. Haploid seedlings were treated with three different doses, such as 0.04, 0.06 and 0.08 per cent of colchicines for different durations (8, 12 and 15 hours). The response of various colchicine concentrations applied for different time durations revealed significant differences at P ≤ 0.05 for various parameters viz., per cent plants survivability, stalk colour, the fertility of tassel, silk present/absent, pollen viability, seed set and per cent doubled haploid formation. In maize, colchicine doses of 0.04 per cent for 12 hours and 0.06 per cent for 8 hours, respectively were established as optimum for enhanced doubled haploid production. But among these two, 0.04 per cent for 12 hours was observed to be best dose for doubled haploid production in maize.


2020 ◽  
Vol 79 (04) ◽  
Author(s):  
R. K. Khulbe ◽  
A. Pattanayak ◽  
Vivek Panday

The current method of doubled haploid (DH) development in maize involves in vivo production of haploids using R1-njbased haploid inducer lines that upon use as male render a small fraction of seed in the pollinated female ears haploid. Identification of haploid seed relies on R1-nj marker expression in the endosperm and embryo, and the degree of its expression determines efficiency of DH development process. In the present study, R1-nj expression in the endosperm was characterized in crosses of CIMMYT’s R1-nj-based haploid inducer TAILP1 with a set comprising 18 early maturity hybrids and their 23 parental inbreds. Kernel colour inhibition was observed only in a small proportion of the hybrids and inbreds. Comparison of R1-nj expression in the hybrids and their parental inbreds revealed a distinct pattern, which may be useful in identifying source populations and/or determining parental constituents for synthesizing source populations with predicted amenability to doubled haploid development using R1-nj-based haploid inducers. However, deviation from the pattern was noted in hybrids involving inbreds with higher degree of colour inhibition, which suggests complex nature of R1-nj phenotype expression and necessitates further investigation involving larger sets of germplasm for dissecting the role of maternal and paternal genetic factors in determining R1-nj phenotype expression. The hybrids found exhibiting complete kernel anthocyanin expression in present study can be used directly as source populations for DH development using R1-nj based haploid inducers. Besides, since the inbreds used in the study have originated from and/or are accessible to CGIAR/NARS maize breeding programmes, the information on their kernel anthocyanin expression can be helpful in selection of source populations or generating new source populations amenable for DH development using R1-nj based haploid inducers.


2019 ◽  
Vol 132 (12) ◽  
pp. 3227-3243 ◽  
Author(s):  
Vijay Chaikam ◽  
Willem Molenaar ◽  
Albrecht E. Melchinger ◽  
Prasanna M. Boddupalli

Key Message Increased efficiencies achieved in different steps of DH line production offer greater benefits to maize breeding programs. Abstract Doubled haploid (DH) technology has become an integral part of many commercial maize breeding programs as DH lines offer several economic, logistic and genetic benefits over conventional inbred lines. Further, new advances in DH technology continue to improve the efficiency of DH line development and fuel its increased adoption in breeding programs worldwide. The established method for maize DH production covered in this review involves in vivo induction of maternal haploids by a male haploid inducer genotype, identification of haploids from diploids at the seed or seedling stage, chromosome doubling of haploid (D0) seedlings and finally, selfing of fertile D0 plants. Development of haploid inducers with high haploid induction rates and adaptation to different target environments have facilitated increased adoption of DH technology in the tropics. New marker systems for haploid identification, such as the red root marker and high oil marker, are being increasingly integrated into new haploid inducers and have the potential to make DH technology accessible in germplasm such as some Flint, landrace, or tropical material, where the standard R1-nj marker is inhibited. Automation holds great promise to further reduce the cost and time in haploid identification. Increasing success rates in chromosome doubling protocols and/or reducing environmental and human toxicity of chromosome doubling protocols, including research on genetic improvement in spontaneous chromosome doubling, have the potential to greatly reduce the production costs per DH line.


2005 ◽  
Vol 130 (4) ◽  
pp. 555-560 ◽  
Author(s):  
Elisabet Claveria ◽  
Jordi Garcia-Mas ◽  
Ramon Dolcet-Sanjuan

Homozygous doubled haploid lines (DHLs) from new cucumber (Cucumis sativus L.) accessions could be useful to accelerate breeding for resistant varieties. DHLs have been generated by in vitro rescue of in vivo induced parthenogenic embryos. The protocol developed involves the following: 1) induction of parthenogenic embryos by pollinating with pollen irradiated with a Co60 γ-ray source at 500 Gy; 2) in vitro rescue of putative parthenogenic embryos identified by their morphology and localized using a dissecting scope or X-ray radiography; 3) discrimination of undesirable zygotic individuals from the homozygous plants using cucumber and melon SSR markers; 4) determination of ploidy level from homozygous plants by flow cytometry; 5) in vitro chromosome doubling of haploids; and 6) acclimation and selfing of selected lines. Codominant markers and flow cytometry confirmed the gametophytic origin of plants regenerated by parthenogenesis, since all homozygous lines were haploids. No spontaneous doubled haploid plants were rescued. Chromosome doubling of haploid plants was accomplished by an in vitro treatment with 500 μm colchicine. Rescue of diploid or chimeric plants was shown by flow cytometry, prior to their acclimation and planting in the greenhouse. Selfing of colchicine-treated haploid plants allowed for the perpetuation by seed of homozygous lines. The high rate of seed set, 90% of the lines produced seed, facilitated the recovery of inbred lines. Despite some limiting factors, parthenogenesis is routinely used in a cucumber-breeding program to achieve complete homozygosity in one generation. Breeding for new commercial hybrid cultivars will be accelerated. DHLs are ideal resources for genomic analyses.


2020 ◽  
Vol 48 (4) ◽  
pp. 423-430
Author(s):  
F. Rádi ◽  
K. Török ◽  
M. Nagymihály ◽  
A. Kereszt ◽  
D. Dudits

AbstractDoubled haploid (DH) technology is an essential component in producing inbred lines for a competitive maize (Zea mays L.) breeding program. The R1-navajo (R1-nj) gene provides phenotypic marker that insures only variable reliability for seed selection of haploid embryos. Therefore, in the present study we outline a complex protocol for early stage genome size determination that integrates the phenotypic screening with the flow cytometry of nuclei from root tips and with the use of DNA isolated from seedlings for molecular marker-based genotyping. In a representative experiment with three genotypes, only 59% of the color marker pre-selected seeds were confirmed to be haploid by cytometric analysis of nuclei isolated from root tips. As a novel tool we have identified the UMC1152 SSR marker being polymorphic between the haploid inducer line (K405) and the K4390 hybrid as parents to screen seedlings pre-selected with the R1-navajo marker. Using this molecular marker, alleles characteristic for the inducer K405 line could not be detected in 83% of seedlings previously selected as haploid candidate. Seedlings identified as haploids were exposed to 0.06% colchicine solution for rediploidization. This procedure resulted in doubled haploids with 3% frequency relative to the initial population as it was quantified by the number of mature maize plants with fertile tassel. The described complex approach can support safer identification of haploids at early seedling stage in a hybrid population derived from crossing with a haploid inducer line.


Crop Science ◽  
2011 ◽  
Vol 51 (4) ◽  
pp. 1498-1506 ◽  
Author(s):  
Vanessa Prigge ◽  
Ciro Sánchez ◽  
Baldev S. Dhillon ◽  
Wolfgang Schipprack ◽  
José Luis Araus ◽  
...  

2021 ◽  
Author(s):  
Yu Zhong ◽  
Baojian Chen ◽  
Dong Wang ◽  
Xijian Zhu ◽  
Yuwen Wang ◽  
...  

Doubled haploid (DH) technology is used to obtain homozygous lines in a single generation, which significantly accelerates the crop breeding trajectory. Traditionally, in vitro culture is used to generate DHs, but is limited by species and genotype recalcitrance. In vivo haploid induction (HI) through seed is been widely and efficiently used in maize and was recently extended to several monocot crops. However, a similar generic and efficient HI system is still lacking in dicot crops. Here we show that genotype-independent in vivo HI can be triggered by mutation of DMP genes in tomato, rapeseed and tobacco with HI rates of ~1.9%, 2.4% and 1.2%, respectively. The DMP-HI system offers a robust DH technology to facilitate variety improvement in these crops. The success of this approach and the conservation of DMP genes paves the way for a generic and efficient genotype-independent HI system in other dicot crops.


Sign in / Sign up

Export Citation Format

Share Document