scholarly journals Centro de Análise Sirgas - IBGE: novas estratégias de processamento e combinação, e a influência da mudança do referencial global nos resultados

2012 ◽  
Vol 18 (1) ◽  
pp. 63-85
Author(s):  
Sonia Maria Alves Costa ◽  
Alberto Luis Da Silva ◽  
Marco Aurélio De Almeida Lima ◽  
Newton José De Moura Júnior

Atualmente, o SIRGAS (Sistema de Referência Geocêntrico para as Américas) é realizado por uma rede GNSS (Global Navigation Satellite System) permanente denominada SIRGAS-CON, com cerca de 240 estações em funcionamento permanente, distribuídas na América do Sul, Central e Caribe. Os Centros de Análise SIRGAS foram estabelecidos com a finalidade de determinar sistematicamente as coordenadas das estações SIRGAS-CON, seguindo padrões estabelecidos internacionalmente, a fim de apoiar a manutenção do sistema e as atividades do Grupo de Trabalho SIRGAS-GT I (Sistema de Referência). Desde agosto de 2008 a Coordenação de Geodésia do Instituto Brasileiro de Geografia e Estatística-IBGE assumiu oficialmente as atividades de um Centro de Análise. Este é um trabalho cuja dedicação é crescente uma vez que o número de estações no continente Sul Americano vem aumentando rapidamente nos últimos anos. Desta atividade diária são geradas dentre outros resultados, as séries temporais das coordenadas de cada estação, possibilitando assim a determinação dos deslocamentos das estações em função da movimentação da crosta terrestre, os movimentos locais como subsidência e/ou soerguimento crustal, causados por fenômenos naturais, como por exemplo, terremotos, além de efeitos sazonais causados por fatores diversos. Paralelamente a atividade de processamento dos dados GNSS, o IBGE também realiza semanalmente a combinação das soluções semanais dos nove Centros de Processamento SIRGAS. Esta combinação tem por objetivo comparar os resultados com os obtidos pelo DGFI (Deutsches Geodätisches Forschungsinstitut), o qual disponibiliza a solução final semanal da rede SIRGAS-CON. Por se tratar de resultados precisos, a mudança em alguma informação no processamento pode acarretar alterações nas coordenadas determinadas e, conseqüentemente, descontinuidades nas séries temporais de cada estação. Recentemente, em 17 de abril de 2011 (semana GPS 1632), as órbitas (finais e rápidas), as correções dos relógios dos satélites e o modelo de calibração das antenas disponibilizado pelo International GNSS Service - IGS, passaram a estar referidos à nova realização do IGS, denominada IGS08. Conseqüentemente, a partir dessa data, os processamentos GPS que utilizam os produtos IGS terão seus resultados referidos a este novo sistema de referência, o que poderá acarretar descontinuidades nas coordenadas. O objetivo desse trabalho é apresentar a estratégia de processamento atualmente em operação, bem com uma nova estratégia visando à melhoria dos resultados. Outro objetivo é apresentar alguns resultados do processamento e combinação semanal realizados pelo IBGE, bem como esclarecer as alterações ocorridas com a adoção da nova versão da Rede de Referência Global para soluções GNSS, o IGS08 e uma análise preliminar da conseqüência desta mudança.

2020 ◽  
Vol 8 (7) ◽  
pp. 514
Author(s):  
Serdar Erol

This case study aims to investigate the effect of different Multi-GNSS EXperiment (MGEX) precise products provided by International GNSS Service (IGS) Analysis Centers (ACs) on post-processing kinematic Precise Point Positioning (PPP) accuracy performance with different satellite system combinations in a dynamic environment. Within this frame, a test was carried out in a lake and kinematic data were collected over 6 h at 1 Hz rate from the available Global Navigation Satellite System (GNSS) constellations with the geodetic-grade receiver fixed on a marine vehicle for bathymetric mapping. PPP-derived coordinates were determined by a commercial GNSS post-processing software with different processing approaches as GPS (Global Positioning System)-only, GPS+GLObal’naya NAvigatsionnaya Sputnikovaya Sistema (GLONASS), GPS+GLONASS+European Global Navigation Satellite System (Galileo), GPS+GLONASS+Chinese Global Navigation Satellite System (BeiDou), and GPS+GLONASS+Galileo+BeiDou. The PPP coordinates were then compared to the reference coordinates obtained from the post-processed carrier phase-based differential kinematic solutions. In general, the results showed that the kinematic multi-constellation GNSS PPP technique could provide positioning accuracy from cm to decimeter level as depending on the collected data constellations and used precise products in the processing. Among all solutions, the GPS+GLONASS+Galileo+BeiDou combination with German Research Centre for Geosciences (GFZ)’s precise products presented the best multi-GNSS PPP performance, rather than the other combinations and quad-constellation alternatives using different precise products. In this study, the test procedure and the obtained results are given in detail.


2019 ◽  
Vol 71 (3) ◽  
pp. 726-755
Author(s):  
Franciele Lúcia Silva Braga ◽  
William Rodrigo Dal Poz

O Software Bernese GNSS (BSW) é um conjunto de pacotes de processamento de observáveis GNSS (Global Navigation Satellite System) de alto desempenho, que proporciona estimativas com alta acurácia, e flexibilidade em suas aplicações. Uma destas funcionalidades é a automatização de scripts que realizam o Posicionamento por Ponto Preciso (PPP). O objetivo deste trabalho é analisar as potencialidades do PPP no BSW. Para alcançar esse propósito foram estimadas as coordenadas de 90 estações da RBMC (Rede Brasileira de Monitoramento Contínuo dos Sistemas GNSS) no BSW e no serviço IBGE-PPP online, referenciadas  a atual realização do International GNSS Service, o IGS14, na época dos dados. As coordenadas estimadas foram comparadas com as coordenadas de referência das estações (SIRGAS2000, época 2000,40), de três formas distintas: 1. Referenciais e épocas incompatíveis; 2. Compatibilização apenas dos referenciais; e 3. Referenciais e épocas compatíveis. As acurácias das coordenadas reduziram no processo de compatibilização de referenciais. Como esperado, o fator predominante na alteração das coordenadas planimétricas se refere à sua evolução temporal. Ademais, as acurácias planimétricas e altimétricas apresentaram estatísticas descritivas similares ao nível do milímetro, evidenciando a potencialidade do BSW no PPP. 


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fahad Alhomayani ◽  
Mohammad H. Mahoor

AbstractIn recent years, fingerprint-based positioning has gained researchers’ attention since it is a promising alternative to the Global Navigation Satellite System and cellular network-based localization in urban areas. Despite this, the lack of publicly available datasets that researchers can use to develop, evaluate, and compare fingerprint-based positioning solutions constitutes a high entry barrier for studies. As an effort to overcome this barrier and foster new research efforts, this paper presents OutFin, a novel dataset of outdoor location fingerprints that were collected using two different smartphones. OutFin is comprised of diverse data types such as WiFi, Bluetooth, and cellular signal strengths, in addition to measurements from various sensors including the magnetometer, accelerometer, gyroscope, barometer, and ambient light sensor. The collection area spanned four dispersed sites with a total of 122 reference points. Each site is different in terms of its visibility to the Global Navigation Satellite System and reference points’ number, arrangement, and spacing. Before OutFin was made available to the public, several experiments were conducted to validate its technical quality.


2010 ◽  
Vol 63 (2) ◽  
pp. 269-287 ◽  
Author(s):  
S. Abbasian Nik ◽  
M. G. Petovello

These days, Global Navigation Satellite System (GNSS) technology plays a critical role in positioning and navigation applications. Use of GNSS is becoming more of a need to the public. Therefore, much effort is needed to make the civilian part of the system more accurate, reliable and available, especially for the safety-of-life purposes. With the recent revitalization of Russian Global Navigation Satellite System (GLONASS), with a constellation of 20 satellites in August 2009 and the promise of 24 satellites by 2010, it is worthwhile concentrating on the GLONASS system as a method of GPS augmentation to achieve more reliable and accurate navigation solutions.


2021 ◽  
Vol 13 (11) ◽  
pp. 2032
Author(s):  
Junchan Lee ◽  
Sunil Bisnath ◽  
Regina S.K. Lee ◽  
Narin Gavili Kilane

This paper describes a computation method for obtaining dielectric constant using Global Navigation Satellite System reflectometry (GNSS-R) products. Dielectric constant is a crucial component in the soil moisture retrieval process using reflected GNSS signals. The reflectivity for circular polarized signals is combined with the dielectric constant equation that is used for radiometer observations. Data from the Cyclone Global Navigation Satellite System (CYGNSS) mission, an eight-nanosatellite constellation for GNSS-R, are used for computing dielectric constant. Data from the Soil Moisture Active Passive (SMAP) mission are used to measure the soil moisture through its radiometer, and they are considered as a reference to confirm the accuracy of the new dielectric constant calculation method. The analyzed locations have been chosen that correspond to sites used for the calibration and validation of the SMAP soil moisture product using in-situ measurement data. The retrieved results, especially in the case of a specular point around Yanco, Australia, show that the estimated results track closely to the soil moisture results, and the Root Mean Square Error (RMSE) in the estimated dielectric constant is approximately 5.73. Similar results can be obtained when the specular point is located near the Texas Soil Moisture Network (TxSON), USA. These results indicate that the analysis procedure is well-defined, and it lays the foundation for obtaining quantitative soil moisture content using the GNSS reflectometry results. Future work will include applying the computation product to determine the characteristics that will allow for the separation of coherent and incoherent signals in delay Doppler maps, as well as to develop local soil moisture models.


Sign in / Sign up

Export Citation Format

Share Document