scholarly journals The visualization and analysis of urban facility pois using network kernel density estimation constrained by multi-factors

2014 ◽  
Vol 20 (4) ◽  
pp. 902-926 ◽  
Author(s):  
Wenhao Yu ◽  
Tinghua Ai

The urban facility, one of the most important service providers is usually represented by sets of points in GIS applications using POI (Point of Interest) model associated with certain human social activities. The knowledge about distribution intensity and pattern of facility POIs is of great significance in spatial analysis, including urban planning, business location choosing and social recommendations. Kernel Density Estimation (KDE), an efficient spatial statistics tool for facilitating the processes above, plays an important role in spatial density evaluation, because KDE method considers the decay impact of services and allows the enrichment of the information from a very simple input scatter plot to a smooth output density surface. However, the traditional KDE is mainly based on the Euclidean distance, ignoring the fact that in urban street network the service function of POI is carried out over a network-constrained structure, rather than in a Euclidean continuous space. Aiming at this question, this study proposes a computational method of KDE on a network and adopts a new visualization method by using 3-D "wall" surface. Some real conditional factors are also taken into account in this study, such as traffic capacity, road direction and facility difference. In practical works the proposed method is implemented in real POI data in Shenzhen city, China to depict the distribution characteristic of services under impacts of multi-factors.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wenzhong Shi ◽  
Chengzhuo Tong ◽  
Anshu Zhang ◽  
Bin Wang ◽  
Zhicheng Shi ◽  
...  

A Correction to this paper has been published: https://doi.org/10.1038/s42003-021-01924-6


2021 ◽  
Vol 13 (1) ◽  
pp. 796-806
Author(s):  
Zhen Shuo ◽  
Zhang Jingyu ◽  
Zhang Zhengxiang ◽  
Zhao Jianjun

Abstract Understanding the risk of grassland fire occurrence associated with historical fire point events is critical for implementing effective management of grasslands. This may require a model to convert the fire point records into continuous spatial distribution data. Kernel density estimation (KDE) can be used to represent the spatial distribution of grassland fire occurrences and decrease the influences historical records in point format with inaccurate positions. The bandwidth is the most important parameter because it dominates the amount of variation in the estimation of KDE. In this study, the spatial distribution characteristic of the points was considered to determine the bandwidth of KDE with the Ripley’s K function method. With high, medium, and low concentration scenes of grassland fire points, kernel density surfaces were produced by using the kernel function with four bandwidth parameter selection methods. For acquiring the best maps, the estimated density surfaces were compared by mean integrated squared error methods. The results show that Ripley’s K function method is the best bandwidth selection method for mapping and analyzing the risk of grassland fire occurrence with the dependent or inaccurate point variable, considering the spatial distribution characteristics.


Sign in / Sign up

Export Citation Format

Share Document