scholarly journals Particle packing of cement and silica fume in pastes using an analytical model

2016 ◽  
Vol 9 (1) ◽  
pp. 48-65 ◽  
Author(s):  
A. HERMANN ◽  
E. A. LANGARO ◽  
S. H. LOPES DA SILVA ◽  
N. S. KLEIN

When added to concrete in appropriate content, silica fume may provide an increase in the mechanical strength of the material due to its high pozzolanic reactivity. In addition to the chemical contribution, physical changes can also be observed in concretes with silica fume due to an improvement in the particle packing of the paste. This is a result of their small size spherical particles, which fill the voids between the larger cement grains. However, it is necessary to properly establish the cement replacement content by silica fume, because at high amounts, which exceed the volume of voids between the cement particles, silica fume can promote the loosening of these particles. Thus, instead of filling the voids and increasing the packing density, the addition of silica fume will increase the volume of voids, decreasing the solid concentration. Consequently, this will impair the properties of the concrete. The objective of this paper is to use a particle packing analytical model, the CPM (Compressible Packing Model), to verify the maximum packing density of cement and silica fume, which could be associated with the silica fume optimum content in pastes. The ideal content of silica fume in pastes, mortars and concretes is usually experimentally determined. However, a theoretical study to contrast experimental data may help understanding the behaviour of silica fume in mixes. Theoretical results show maximum amounts of silica fume in the order of 18 to 20% of the cement weight, which is high considering recommendations on literature of 15%. Nevertheless, the packing model does not consider the effect of silica fume high specific surface on the agglomeration of particles or water demand. Hence, the packing density predicted by this model cannot be used as the single parameter in determining the optimum amount of silica fume in pastes.

2019 ◽  
Vol 12 (2) ◽  
pp. 210-232 ◽  
Author(s):  
H. F. CAMPOS ◽  
T. M. S. ROCHA ◽  
G. C. REUS ◽  
N. S. KLEIN ◽  
J. MARQUES FILHO

Abstract Cement is considered the basic component with the highest environmental impact in construction, in terms of CO2 emissions. As for the aggregates, the process of comminution of rocks, in addition to artificial sand, generates stone powder that ends up being stored outdoors, generating environmental damages. Thus, the replacement of cement by stone powder appears as an attractive alternative towards the sustainable concretes. In this context, the objective of this paper is to determine the maximum packing density in Portland cement, silica fume and stone dust pastes, to determine the optimal cement substitution content for the stone powder. In addition, it is intended to verify the influence of excess water on the consistency of the mixtures produced. The substitution was done in contents equal to 0%, 7%, 14% and 21% by volume and, for each content, the packing density was determined analytically by CPM model and combinations were reproduced experimentally. Excess water was checked by the mini Kantro cone test. The results showed that the higher cement substitution content of the stone powder obtained the higher packing density, experimental and analytical, and the higher workability, allowing economic and environmental advantages. Analyzing each material, the stone powder resulted in the highest packing density and silica fume is the lowest one. Therefore, finer particles resulted in lower packaging densities, due to the greater specific surface area, which demands more water. The agglomeration resulted in more empty gaps between the grains. In addition, mixtures flowability increased with the increase of the stone powder content. As the excess water is responsible for mixture lubrication, a higher packing density for a given volume of water improves the flowability.


Author(s):  
Wujian Long ◽  
Bo Zhou ◽  
Peijian Liang ◽  
Roujia Sun

2013 ◽  
Vol 45 (4) ◽  
pp. 925-944
Author(s):  
Ó. Thórisdóttir ◽  
M. Kiderlen

Wicksell's classical corpuscle problem deals with the retrieval of the size distribution of spherical particles from planar sections. We discuss the problem in a local stereology framework. Each particle is assumed to contain a reference point and the individual particle is sampled with an isotropic random plane through this reference point. Both the size of the section profile and the position of the reference point inside the profile are recorded and used to recover the distribution of the corresponding particle parameters. Theoretical results concerning the relationship between the profile and particle parameters are discussed. We also discuss the unfolding of the arising integral equations, uniqueness issues, and the domain of attraction relations. We illustrate the approach by providing reconstructions from simulated data using numerical unfolding algorithms.


2007 ◽  
Vol 534-536 ◽  
pp. 1621-1624
Author(s):  
Yuto Amano ◽  
Takashi Itoh ◽  
Hoshiaki Terao ◽  
Naoyuki Kanetake

For precise property control of sintered products, it is important to know the powder characteristics, especially the packing density of the powder. In a previous work, we developed a packing simulation program that could make a packed bed of spherical particles having particle size distribution. In order to predict the packing density of the actual powder that consisted of nonspherical particles, we combined the packing simulation with a particle shape analysis. We investigated the influence of the particle size distribution of the powder on the packing density by executing the packing simulation based on particle size distributions of the actual milled chromium powders. In addition, the influence of the particle shape of the actual powder on the packing density was quantitatively analyzed. A prediction of the packing density of the milled powder was attempted with an analytical expression between the particle shape of the powder and the packing simulation. The predicted packing densities were in good agreement with the actual data.


2011 ◽  
Vol 374-377 ◽  
pp. 1537-1540
Author(s):  
Dong Lin ◽  
Zi Yun Wen

The comparison experiments are carried out at different silica fume dosage between the silica fume with pre-treatment and the silica fume without pre-treatment. The results show that the pre-treatment of silica fume improved the strength greatly and the silica fume dosage corresponding to the strength peak somewhat moved forward from 0.20 for the cement-based materials with pre-treatment of silica fume to 0.21 for the cement-based materials without pre-treatment of silica fume. The particles distribution experiment results indicate that after the pre-treatment of silica fume, the average particle diameter of silica fume reduced from 2.865μmto 0.151μm. Based on Aim-Goff model, it is concluded that the increase in the compressive strength and flextural strength of cement-based materials with pre-treatment of silica fume, are attributed to the dispersion of silica fume agglomeration and the increase in the packing density of the cement-based materials.


Sign in / Sign up

Export Citation Format

Share Document