scholarly journals Bending reinforced concrete beams with glass fiber reinforced polymer bars: an experimental analysis

Author(s):  
Tales Viebrantz Fernandes ◽  
Aline Ribeiro Paliga ◽  
Charlei Marcelo Paliga

abstract: There is a recurring need to construct in places where environmental aggressiveness is very high, such as tidal-splash sites, chemical industries, etc. In these places, steel bars, commonly used for concrete reinforcement, can suffer deterioration, losing cross-sectional area and consequently the resistant capacity. In this regard, Glass Fiber Reinforced Polymers (GFRP) bars can replace steel because of its high strength to harsh environments, low weight and high tensile strength. Thus, this work aimed to compare reinforced concrete beams with steel bars and GFRP bending bars using the procedures indicated in ABNT:NBR 6118 and ACI 440.1R-15, respectively. Experimental three-point flexural tests were performed on six concrete beams, three reinforced with steel bars and three reinforced with GFRP bars. The beams were designed for centered point loads of 23.5 kN, 37.5 kN and 57 kN, and for each load one beam was reinforced in steel and one in GFRP. As main conclusions, it can be said that the beams reinforced with GFRP bars presented greater transverse displacements due to the low modulus of elasticity of this material. In addition, the beams presented rupture loads close to each design load, showing agreement in the recommendations of the two normative documents. Comparing the maximum loads of steel and GFRP beams, ratios of +9.3%, -3.2% and -3% were obtained for beams designed for 23.5 kN, 37.5 kN and 57 kN, respectively. Also, that variations in design loads cause greater variation in the longitudinal reinforcement rate of GFRP bar-beams compared to steel-bar beams.

2019 ◽  
Vol 9 (14) ◽  
pp. 2838 ◽  
Author(s):  
Sayed Mohamad Soleimani ◽  
Sajjad Sayyar Roudsari

During dynamic events (such as impact forces), structures fail to absorb the incoming energy and catastrophic collapse may occur. Impact and quasi-static tests were carried out on reinforced concrete beams with and without externally bounded sprayed and fabric glass fiber-reinforced polymers. For impact loading, a fully instrumented drop-weight impact machine with a capacity of 14.5 kJ was used. The drop height and loading rate were varied. The load-carrying capacity of reinforced concrete beams under impact loading was obtained using instrumented anvil supports (by summing the support reactions). In quasi-static loading conditions, the beams were tested in three-point loading using a Baldwin Universal Testing Machine. ABAQUS FEA software was used to model some of the tested reinforced concrete beams. It was shown that the stiffness of reinforced concrete beams decreases with increasing drop height. It was also shown that applying sprayed glass fiber-reinforced polymers (with and without mechanical stiffeners) and fabric glass fiber-reinforced polymers on the surface of reinforced concrete beams increased the stiffness. Results obtained from the software analyses were in good agreement with the laboratory test results.


2016 ◽  
Vol 707 ◽  
pp. 51-59 ◽  
Author(s):  
Osama Ahmed Mohamed ◽  
Rania Khattab

The behaviour of reinforced concrete beam strengthened with Carbon Fiber Reinforced Polymer (CFRP) and Glass fiber reinforced polymer GFRP laminates was investigated using finite element models and the results are presented in this paper. The numerical investigation assessed the effect of the configuration of FRP strengthening laminates on the behaviour of concrete beams. The load-deflection behaviour, and ultimate load of strengthened beam were compared to those of un-strengthened concrete beams. It was shown that using U-shaped FRP sheets increased the ultimate load. The stiffness of the strengthed beam also increased after first yielding of steel reinforcing bars. At was also observed that strengthening beams with FRP laminates to one-fourth of the beam span, modifies the failure of the beam from shear-controlled near the end of the unstrengthened beam, to flexure-controlled near mid-span. CFRP produced better results compared GFRP in terms of the ability to enhance the behavior of strengthenened reinforced concrete beams.


Sign in / Sign up

Export Citation Format

Share Document