Mass trapping and attract and kill to control medfly (Ceratitis capitataWied.) for low-zero residues in apples

2016 ◽  
Author(s):  
Lucia-Adriana Escudero-Colomar
2018 ◽  
Vol 33 (1) ◽  
pp. 53-63
Author(s):  
Adil Asfers ◽  
Abdelmalek Joutei ◽  
Ahmed Boughdad ◽  
Abdelali Blenzar ◽  
Rachid Lahlali ◽  
...  

To develop eco-friendly alternative control strategies for medfly, mass trapping trials were conducted in the central Morocco during the crop season 2016. Two control methods, mass trapping and the attract-and-kill technique were compared for the control of medfly on two peach varieties (?Rome Star? and ?Ryan Sun?) in Sefou district. For mass trapping, 62 traps/1.23 ha of MagnetTMMed type baited with ammonium acetate, trimethylamine, putrescine and 0.01 g of deltamethrin were installed on both varieties. In plots testing the attract-and-kill technique, treatments with malathion in mixture with protein hydrolyzate were applied to straw tufts attached to branches of the same varieties whenever 1 fly was caught on a Trimedlure trap installed at the center of each plot. The results showed that the number of flies captured by mass trapping reached 508 and 489 adults on ?Rome Star? and ?Ryan Sun?, respectively. The average number varied from 1 to 3 adults/trap/day, depending on the date of capture and the variety, and females accounted for 62-100% of total caught flies. In plots protected by the attract-and-kill technique, and taking into account the threshold adopted by the farm, 11 and 15 treatments were carried out respectively on the ?Ryan Sun? and ?Rome Star? varieties. Overall, infestation rates in plots did not exceed 0.3% before or at harvest with mass trapping versus 0.9% with the attract-and-kill technique. On fruit dropped on the ground, the infestation rate did not exceed 4% in mass trapping, compared to 11.5% in the chemically treated plots. Mass trapping was therefore proved to be an effective and eco-friendly tool for managing medfly on peach fruit.


Author(s):  
Sandra A. Allan

Manipulation of insect behavior can provide the foundation for effective strategies for control of insect crop pests. A detailed understanding of life cycles and the behavioral repertoires of insect pests is essential for development of this approach. A variety of strategies have been developed based on behavioral manipulation and include mass trapping, attract-and-kill, auto-dissemination, mating and host plant location disruption, and push-pull. Insight into application of these strategies for insect pests within Diptera, Lepidoptera, Coleoptera, and Hemiptera/Thysanoptera are provided, but first with an overview of economic damage and traditional control approaches, and overview of relevant behavioral/ecological traits. Then examples are provided of how these different control strategies are applied for each taxonomic group. The future of these approaches in the context of altered crop development for repellency or as anti-feedants, the effects of climate change and the risks of behaviorally-based methods are discussed.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 701
Author(s):  
Lorenzo Tonina ◽  
Giulia Zanettin ◽  
Paolo Miorelli ◽  
Simone Puppato ◽  
Andrew G. S. Cuthbertson ◽  
...  

The strawberry blossom weevil (SBW), Anthonomus rubi, is a well-documented pest of strawberry. Recently, in strawberry fields of Trento Province (north-east Italy), new noteworthy damage on fruit linked to SBW adults was observed, combined with a prolonged adult activity until the autumn. In this new scenario, we re-investigated SBW biology, ecology, monitoring tools, and potential control methods to develop Integrated Pest Management (IPM) strategies. Several trials were conducted on strawberry in the laboratory, field and semi-natural habitats. The feeding activity of adult SBW results in small deep holes on berries at different stages, causing yield losses of up to 60%. We observed a prolonged survival of newly emerged adults (>240 days) along with their ability to sever flower buds without laying eggs inside them in the same year (one generation per year). SBW adults were present in the strawberry field year-round, with movement between crop and no crop habitats, underlying a potential role of other host/feeding plants to support its populations. Yellow sticky traps combined with synthetic attractants proved promising for both adult monitoring and mass trapping. Regarding control, adhesive tapes and mass trapping using green bucket pheromone traps gave unsatisfactory results, while the high temperatures provided by the black fabric, the periodic removal of severed buds or adults and Chlorpyrifos-methyl application constrained population build-up. The findings are important for the development of an IPM strategy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Léa Douchet ◽  
Marion Haramboure ◽  
Thierry Baldet ◽  
Gregory L’Ambert ◽  
David Damiens ◽  
...  

AbstractThe expansion of mosquito species worldwide is creating a powerful network for the spread of arboviruses. In addition to the destruction of breeding sites (prevention) and mass trapping, methods based on the sterile insect technique (SIT), the autodissemination of pyriproxyfen (ADT), and a fusion of elements from both of these known as boosted SIT (BSIT), are being developed to meet the urgent need for effective vector control. However, the comparative potential of these methods has yet to be explored in different environments. This is needed to propose and integrate informed guidelines into sustainable mosquito management plans. We extended a weather-dependent model of Aedes albopictus population dynamics to assess the effectiveness of these different vector control methods, alone or in combination, in a tropical (Reunion island, southwest Indian Ocean) and a temperate (Montpellier area, southern France) climate. Our results confirm the potential efficiency of SIT in temperate climates when performed early in the year (mid-March for northern hemisphere). In such a climate, the timing of the vector control action was the key factor in its success. In tropical climates, the potential of the combination of methods becomes more relevant. BSIT and the combination of ADT with SIT were twice as effective compared to the use of SIT alone.


2005 ◽  
Vol 34 (3) ◽  
pp. 181-187 ◽  
Author(s):  
Alan Cork ◽  
Malcolm J. Iles ◽  
Nazira Q. Kamal ◽  
J.C. Saha Choudhury ◽  
M. Mahbub Rahman ◽  
...  

Bangladesh is essentially self-sufficient in rice as a result of the successful adoption of new high-yielding varieties and irrigated summer production over traditional deep-water cultivation practices. The sustainability of the cropping system depends on farmers adopting integrated pest management (IPM) practices in preference to relying solely on insecticides for pest and disease control. Yet insecticide consumption in rice is increasing, in common with other crop-production systems in Bangladesh. It is probably only the poor economic returns from rice cultivation that prevent more widespread use of pesticides. Enlightened agrochemical companies such as Syngenta Bangladesh Limited have recognized that insecticide use in rice should be discouraged, and promote IPM options through their farmer field school (FFS) programme. This paper describes the results of a collaborative project to assist Syngenta to develop and incorporate mass trapping with sex pheromones into their FFS programme as an environmentally benign method of controlling the predominant insect pests of rice, stem borers.


2015 ◽  
Vol 89 (2) ◽  
pp. 375-389 ◽  
Author(s):  
Robert S. Vernon ◽  
Willem G. van Herk ◽  
Markus Clodius ◽  
Jeff Tolman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document