scholarly journals Improving Domain-Specific Classification by Collaborative Learning with Adaptation Networks

Author(s):  
Si Wu ◽  
Jian Zhong ◽  
Wenming Cao ◽  
Rui Li ◽  
Zhiwen Yu ◽  
...  

For unsupervised domain adaptation, the process of learning domain-invariant representations could be dominated by the labeled source data, such that the specific characteristics of the target domain may be ignored. In order to improve the performance in inferring target labels, we propose a targetspecific network which is capable of learning collaboratively with a domain adaptation network, instead of directly minimizing domain discrepancy. A clustering regularization is also utilized to improve the generalization capability of the target-specific network by forcing target data points to be close to accumulated class centers. As this network learns and specializes to the target domain, its performance in inferring target labels improves, which in turn facilitates the learning process of the adaptation network. Therefore, there is a mutually beneficial relationship between these two networks. We perform extensive experiments on multiple digit and object datasets, and the effectiveness and superiority of the proposed approach is presented and verified on multiple visual adaptation benchmarks, e.g., we improve the state-ofthe-art on the task of MNIST→SVHN from 76.5% to 84.9% without specific augmentation.

Author(s):  
Yongchun Zhu ◽  
Fuzhen Zhuang ◽  
Deqing Wang

While Unsupervised Domain Adaptation (UDA) algorithms, i.e., there are only labeled data from source domains, have been actively studied in recent years, most algorithms and theoretical results focus on Single-source Unsupervised Domain Adaptation (SUDA). However, in the practical scenario, labeled data can be typically collected from multiple diverse sources, and they might be different not only from the target domain but also from each other. Thus, domain adapters from multiple sources should not be modeled in the same way. Recent deep learning based Multi-source Unsupervised Domain Adaptation (MUDA) algorithms focus on extracting common domain-invariant representations for all domains by aligning distribution of all pairs of source and target domains in a common feature space. However, it is often very hard to extract the same domain-invariant representations for all domains in MUDA. In addition, these methods match distributions without considering domain-specific decision boundaries between classes. To solve these problems, we propose a new framework with two alignment stages for MUDA which not only respectively aligns the distributions of each pair of source and target domains in multiple specific feature spaces, but also aligns the outputs of classifiers by utilizing the domainspecific decision boundaries. Extensive experiments demonstrate that our method can achieve remarkable results on popular benchmark datasets for image classification.


2013 ◽  
Vol 22 (05) ◽  
pp. 1360005 ◽  
Author(s):  
AMAURY HABRARD ◽  
JEAN-PHILIPPE PEYRACHE ◽  
MARC SEBBAN

A strong assumption to derive generalization guarantees in the standard PAC framework is that training (or source) data and test (or target) data are drawn according to the same distribution. Because of the presence of possibly outdated data in the training set, or the use of biased collections, this assumption is often violated in real-world applications leading to different source and target distributions. To go around this problem, a new research area known as Domain Adaptation (DA) has recently been introduced giving rise to many adaptation algorithms and theoretical results in the form of generalization bounds. This paper deals with self-labeling DA whose goal is to iteratively incorporate semi-labeled target data in the learning set to progressively adapt the classifier from the source to the target domain. The contribution of this work is three-fold: First, we provide the minimum and necessary theoretical conditions for a self-labeling DA algorithm to perform an actual domain adaptation. Second, following these theoretical recommendations, we design a new iterative DA algorithm, called GESIDA, able to deal with structured data. This algorithm makes use of the new theory of learning with (ε,γ,τ)-good similarity functions introduced by Balcan et al., which does not require the use of a valid kernel to learn well and allows us to induce sparse models. Finally, we apply our algorithm on a structured image classification task and show that self-labeling domain adaptation is a new original way to deal with scaling and rotation problems.


2020 ◽  
Vol 34 (04) ◽  
pp. 6243-6250 ◽  
Author(s):  
Qian Wang ◽  
Toby Breckon

Unsupervised domain adaptation aims to address the problem of classifying unlabeled samples from the target domain whilst labeled samples are only available from the source domain and the data distributions are different in these two domains. As a result, classifiers trained from labeled samples in the source domain suffer from significant performance drop when directly applied to the samples from the target domain. To address this issue, different approaches have been proposed to learn domain-invariant features or domain-specific classifiers. In either case, the lack of labeled samples in the target domain can be an issue which is usually overcome by pseudo-labeling. Inaccurate pseudo-labeling, however, could result in catastrophic error accumulation during learning. In this paper, we propose a novel selective pseudo-labeling strategy based on structured prediction. The idea of structured prediction is inspired by the fact that samples in the target domain are well clustered within the deep feature space so that unsupervised clustering analysis can be used to facilitate accurate pseudo-labeling. Experimental results on four datasets (i.e. Office-Caltech, Office31, ImageCLEF-DA and Office-Home) validate our approach outperforms contemporary state-of-the-art methods.


Author(s):  
Zechang Li ◽  
Yuxuan Lai ◽  
Yansong Feng ◽  
Dongyan Zhao

Recently, semantic parsing has attracted much attention in the community. Although many neural modeling efforts have greatly improved the performance, it still suffers from the data scarcity issue. In this paper, we propose a novel semantic parser for domain adaptation, where we have much fewer annotated data in the target domain compared to the source domain. Our semantic parser benefits from a two-stage coarse-to-fine framework, thus can provide different and accurate treatments for the two stages, i.e., focusing on domain invariant and domain specific information, respectively. In the coarse stage, our novel domain discrimination component and domain relevance attention encourage the model to learn transferable domain general structures. In the fine stage, the model is guided to concentrate on domain related details. Experiments on a benchmark dataset show that our method consistently outperforms several popular domain adaptation strategies. Additionally, we show that our model can well exploit limited target data to capture the difference between the source and target domain, even when the target domain has far fewer training instances.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253415
Author(s):  
Hyunsik Jeon ◽  
Seongmin Lee ◽  
U Kang

Given trained models from multiple source domains, how can we predict the labels of unlabeled data in a target domain? Unsupervised multi-source domain adaptation (UMDA) aims for predicting the labels of unlabeled target data by transferring the knowledge of multiple source domains. UMDA is a crucial problem in many real-world scenarios where no labeled target data are available. Previous approaches in UMDA assume that data are observable over all domains. However, source data are not easily accessible due to privacy or confidentiality issues in a lot of practical scenarios, although classifiers learned in source domains are readily available. In this work, we target data-free UMDA where source data are not observable at all, a novel problem that has not been studied before despite being very realistic and crucial. To solve data-free UMDA, we propose DEMS (Data-free Exploitation of Multiple Sources), a novel architecture that adapts target data to source domains without exploiting any source data, and estimates the target labels by exploiting pre-trained source classifiers. Extensive experiments for data-free UMDA on real-world datasets show that DEMS provides the state-of-the-art accuracy which is up to 27.5% point higher than that of the best baseline.


Author(s):  
Jun Wen ◽  
Nenggan Zheng ◽  
Junsong Yuan ◽  
Zhefeng Gong ◽  
Changyou Chen

Domain adaptation is an important technique to alleviate performance degradation caused by domain shift, e.g., when training and test data come from different domains. Most existing deep adaptation methods focus on reducing domain shift by matching marginal feature distributions through deep transformations on the input features, due to the unavailability of target domain labels. We show that domain shift may still exist via label distribution shift at the classifier, thus deteriorating model performances. To alleviate this issue, we propose an approximate joint distribution matching scheme by exploiting prediction uncertainty. Specifically, we use a Bayesian neural network to quantify prediction uncertainty of a classifier. By imposing distribution matching on both features and labels (via uncertainty), label distribution mismatching in source and target data is effectively alleviated, encouraging the classifier to produce consistent predictions across domains. We also propose a few techniques to improve our method by adaptively reweighting domain adaptation loss to achieve nontrivial distribution matching and stable training. Comparisons with state of the art unsupervised domain adaptation methods on three popular benchmark datasets demonstrate the superiority of our approach, especially on the effectiveness of alleviating negative transfer.


2020 ◽  
Vol 34 (05) ◽  
pp. 7480-7487
Author(s):  
Yu Cao ◽  
Meng Fang ◽  
Baosheng Yu ◽  
Joey Tianyi Zhou

Reading comprehension (RC) has been studied in a variety of datasets with the boosted performance brought by deep neural networks. However, the generalization capability of these models across different domains remains unclear. To alleviate the problem, we investigate unsupervised domain adaptation on RC, wherein a model is trained on the labeled source domain and to be applied to the target domain with only unlabeled samples. We first show that even with the powerful BERT contextual representation, a model can not generalize well from one domain to another. To solve this, we provide a novel conditional adversarial self-training method (CASe). Specifically, our approach leverages a BERT model fine-tuned on the source dataset along with the confidence filtering to generate reliable pseudo-labeled samples in the target domain for self-training. On the other hand, it further reduces domain distribution discrepancy through conditional adversarial learning across domains. Extensive experiments show our approach achieves comparable performance to supervised models on multiple large-scale benchmark datasets.


Author(s):  
Yiyang Zhang ◽  
Feng Liu ◽  
Zhen Fang ◽  
Bo Yuan ◽  
Guangquan Zhang ◽  
...  

In unsupervised domain adaptation (UDA), classifiers for the target domain are trained with massive true-label data from the source domain and unlabeled data from the target domain. However, it may be difficult to collect fully-true-label data in a source domain given limited budget. To mitigate this problem, we consider a novel problem setting where the classifier for the target domain has to be trained with complementary-label data from the source domain and unlabeled data from the target domain named budget-friendly UDA (BFUDA). The key benefit is that it is much less costly to collect complementary-label source data (required by BFUDA) than collecting the true-label source data (required by ordinary UDA). To this end, complementary label adversarial network (CLARINET) is proposed to solve the BFUDA problem. CLARINET maintains two deep networks simultaneously, where one focuses on classifying complementary-label source data and the other takes care of the source-to-target distributional adaptation. Experiments show that CLARINET significantly outperforms a series of competent baselines.


Author(s):  
Victor Bouvier ◽  
Philippe Very ◽  
Clément Chastagnol ◽  
Myriam Tami ◽  
Céline Hudelot

Domain Invariant Representations (IR) has improved drastically the transferability of representations from a labelled source domain to a new and unlabelled target domain. Unsupervised Domain Adaptation (UDA) in presence of label shift remains an open problem. To this purpose, we present a bound of the target risk which incorporates both weights and invariant representations. Our theoretical analysis highlights the role of inductive bias in aligning distributions across domains. We illustrate it on standard benchmarks by proposing a new learning procedure for UDA. We observed empirically that weak inductive bias makes adaptation robust to label shift. The elaboration of stronger inductive bias is a promising direction for new UDA algorithms.


Author(s):  
Atsutoshi Kumagai ◽  
Tomoharu Iwata

We propose a simple yet effective method for unsupervised domain adaptation. When training and test distributions are different, standard supervised learning methods perform poorly. Semi-supervised domain adaptation methods have been developed for the case where labeled data in the target domain are available. However, the target data are often unlabeled in practice. Therefore, unsupervised domain adaptation, which does not require labels for target data, is receiving a lot of attention. The proposed method minimizes the discrepancy between the source and target distributions of input features by transforming the feature space of the source domain. Since such unilateral transformations transfer knowledge in the source domain to the target one without reducing dimensionality, the proposed method can effectively perform domain adaptation without losing information to be transfered. With the proposed method, it is assumed that the transformed features and the original features differ by a small residual to preserve the relationship between features and labels. This transformation is learned by aligning the higher-order moments of the source and target feature distributions based on the maximum mean discrepancy, which enables to compare two distributions without density estimation. Once the transformation is found, we learn supervised models by using the transformed source data and their labels. We use two real-world datasets to demonstrate experimentally that the proposed method achieves better classification performance than existing methods for unsupervised domain adaptation.


Sign in / Sign up

Export Citation Format

Share Document