scholarly journals Combining Fact Extraction and Verification with Neural Semantic Matching Networks

Author(s):  
Yixin Nie ◽  
Haonan Chen ◽  
Mohit Bansal

The increasing concern with misinformation has stimulated research efforts on automatic fact checking. The recentlyreleased FEVER dataset introduced a benchmark factverification task in which a system is asked to verify a claim using evidential sentences from Wikipedia documents. In this paper, we present a connected system consisting of three homogeneous neural semantic matching models that conduct document retrieval, sentence selection, and claim verification jointly for fact extraction and verification. For evidence retrieval (document retrieval and sentence selection), unlike traditional vector space IR models in which queries and sources are matched in some pre-designed term vector space, we develop neural models to perform deep semantic matching from raw textual input, assuming no intermediate term representation and no access to structured external knowledge bases. We also show that Pageview frequency can also help improve the performance of evidence retrieval results, that later can be matched by using our neural semantic matching network. For claim verification, unlike previous approaches that simply feed upstream retrieved evidence and the claim to a natural language inference (NLI) model, we further enhance the NLI model by providing it with internal semantic relatedness scores (hence integrating it with the evidence retrieval modules) and ontological WordNet features. Experiments on the FEVER dataset indicate that (1) our neural semantic matching method outperforms popular TF-IDF and encoder models, by significant margins on all evidence retrieval metrics, (2) the additional relatedness score and WordNet features improve the NLI model via better semantic awareness, and (3) by formalizing all three subtasks as a similar semantic matching problem and improving on all three stages, the complete model is able to achieve the state-of-the-art results on the FEVER test set (two times greater than baseline results).1

Author(s):  
Antonio M. Rinaldi ◽  
Cristiano Russo ◽  
Kurosh Madani

Over the last few decades, data has assumed a central role, becoming one of the most valuable items in society. The exponential increase of several dimensions of data, e.g. volume, velocity, variety, veracity, and value, has led the definition of novel methodologies and techniques to represent, manage, and analyse data. In this context, many efforts have been devoted in data reuse and integration processes based on the semantic web approach. According to this vision, people are encouraged to share their data using standard common formats to allow more accurate interconnection and integration processes. In this article, the authors propose an ontology matching framework using novel combinations of semantic matching techniques to find accurate mappings between formal ontologies schemas. Moreover, an upper-level ontology is used as a semantic bridge. An implementation of the proposed framework is able to retrieve, match, and align ontologies. The framework has been evaluated with the state-of-the-art ontologies in the domain of cultural heritage and its performances have been measured by means of standard measures.


Author(s):  
Saravanan Muthaiyah ◽  
Larry Kerschberg

This chapter introduces a hybrid ontology mediation approach for deploying Semantic Web Services (SWS) using Multi-agent systems (MAS). The methodology that the authors have applied combines both syntactic and semantic matching techniques for mapping ontological schemas so as to 1) eliminate heterogeneity; 2)provide higher precision and relevance in matched results; 3) produce better reliability and 4) achieve schema homogeneity. The authors introduce a hybrid matching algorithm i.e. SRS (Semantic Relatedness Score) which is a composite matcher that comprises thirteen well established semantic and syntactic algorithms which have been widely used in linguistic analysis. This chapter provides empirical evidence via several hypothesis tests for validating our approach. A detailed mapping algorithm as well as a Multi-agent based system (MAS) prototype has been developed for brokering Web services as proof-of-concept and to further validate the presented approach. Agent systems today provide brokering services that heavily rely on matching algorithms that at present focus mainly only on syntactic matching techniques. The authors provide empirical evidence that their hybrid approach is a better solution to this problem.


1995 ◽  
Vol 31 (3) ◽  
pp. 419-429 ◽  
Author(s):  
William R. Caid ◽  
Susan T. Dumais ◽  
Stephen I. Gallant

2020 ◽  
Vol 34 (03) ◽  
pp. 2975-2982
Author(s):  
Giuseppe Pirrò

We present RARL, an approach to discover rules of the form body ⇒ head in large knowledge bases (KBs) that typically include a set of terminological facts (TBox) and a set of TBox-compliant assertional facts (ABox). RARL's main intuition is to learn rules by leveraging TBox-information and the semantic relatedness between the predicate(s) in the atoms of the body and the predicate in the head. RARL uses an efficient relatedness-driven TBox traversal algorithm, which given an input rule head, generates the set of most semantically related candidate rule bodies. Then, rule confidence is computed in the ABox based on a set of positive and negative examples. Decoupling candidate generation and rule quality assessment offers greater flexibility than previous work.


Author(s):  
Nursuriati Jamil ◽  
Nor Adzlan Jamaludin ◽  
Nurazzah Abdul Rahman ◽  
Norashida Sabari

2014 ◽  
Author(s):  
Matt Gardner ◽  
Partha Talukdar ◽  
Jayant Krishnamurthy ◽  
Tom Mitchell

Author(s):  
V. Gorbatsevich ◽  
Y. Vizilter ◽  
V. Knyaz ◽  
A. Moiseenko

In this paper we combine the ideas of image matching, object detection, image retrieval and zero-shot learning for stating and solving the semantic matching problem. Semantic matcher takes two images (test and request) as input and returns detected objects (bounding boxes) on test image corresponding to semantic class represented by request (sample) image. We implement our single-shot semantic matcher CNN architecture based on GoogleNet and YOLO/DetectNet architectures. We propose the detection-by-request training and testing protocols for semantic matching algorithms. We train and test our CNN on the ILSVRC 2014 with 200 seen and 90 unseen classes and provide the real-time object detection with mAP 23 for seen and mAP 21 for unseen classes.


2017 ◽  
Author(s):  
Alejandra Lorena Paoletti ◽  
Jorge Martinez-Gil ◽  
Klaus-Dieter Schewe

In the Human Resources domain the accurate matching between job positions and job applicants profiles is crucial for job seekers and recruiters. The use of recruitment taxonomies has proven to be of significant advantage in the area by enabling semantic matching and reasoning. Hence, the development of Knowledge Bases (KB) where curricula vitae and job offers can be uploaded and queried in order to obtain the best matches by both, applicants and recruiters is highly important. We introduce an approach to improve matching of profiles, starting by expressing jobs and applicants profiles by filters representing skills and competencies. Filters are used to calculate the similarity between concepts in the subsumption hierarchy of a KB. This is enhanced by adding weights and aggregates on filters. Moreover, we present an approach to evaluate over-qualification and introduce blow-up operators that transform certain role relations such that matching of filters can be applied.


Sign in / Sign up

Export Citation Format

Share Document