scholarly journals Scene Text Detection with Supervised Pyramid Context Network

Author(s):  
Enze Xie ◽  
Yuhang Zang ◽  
Shuai Shao ◽  
Gang Yu ◽  
Cong Yao ◽  
...  

Scene text detection methods based on deep learning have achieved remarkable results over the past years. However, due to the high diversity and complexity of natural scenes, previous state-of-the-art text detection methods may still produce a considerable amount of false positives, when applied to images captured in real-world environments. To tackle this issue, mainly inspired by Mask R-CNN, we propose in this paper an effective model for scene text detection, which is based on Feature Pyramid Network (FPN) and instance segmentation. We propose a supervised pyramid context network (SPCNET) to precisely locate text regions while suppressing false positives.Benefited from the guidance of semantic information and sharing FPN, SPCNET obtains significantly enhanced performance while introducing marginal extra computation. Experiments on standard datasets demonstrate that our SPCNET clearly outperforms start-of-the-art methods. Specifically, it achieves an F-measure of 92.1% on ICDAR2013, 87.2% on ICDAR2015, 74.1% on ICDAR2017 MLT and 82.9% on

Author(s):  
Dibyajyoti Dhar ◽  
Neelotpal Chakraborty ◽  
Sayan Choudhury ◽  
Ashis Paul ◽  
Ayatullah Faruk Mollah ◽  
...  

Text detection in natural scene images is an interesting problem in the field of information retrieval. Several methods have been proposed over the past few decades for scene text detection. However, the robustness and efficiency of these methods are downgraded due to high sensitivity towards various complexities of an image. Also, in multi-lingual environment where texts may occur in multiple languages, a method may not be suitable for detecting scene texts in certain languages. To counter these challenges, a gradient morphology-based method is proposed in this paper that proves to be robust against image complexities and efficiently detects scene texts irrespective of their languages. The method is validated using low quality images from standard multi-lingual datasets like MSRA-TD500 and MLe2e. The performance of the method is compared with that of some state-of-the-art methods, and comparably better results are observed.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2657
Author(s):  
Shuangshuang Li ◽  
Wenming Cao

Recently, various object detection frameworks have been applied to text detection tasks and have achieved good performance in the final detection. With the further expansion of text detection application scenarios, the research value of text detection topics has gradually increased. Text detection in natural scenes is more challenging for horizontal text based on a quadrilateral detection box and for curved text of any shape. Most networks have a good effect on the balancing of target samples in text detection, but it is challenging to deal with small targets and solve extremely unbalanced data. We continued to use PSENet to deal with such problems in this work. On the other hand, we studied the problem that most of the existing scene text detection methods use ResNet and FPN as the backbone of feature extraction, and improved the ResNet and FPN network parts of PSENet to make it more conducive to the combination of feature extraction in the early stage. A SEMPANet framework without an anchor and in one stage is proposed to implement a lightweight model, which is embodied in the training time of about 24 h. Finally, we selected the two most representative datasets for oriented text and curved text to conduct experiments. On ICDAR2015, the improved network’s latest results further verify its effectiveness; it reached 1.01% in F-measure compared with PSENet-1s. On CTW1500, the improved network performed better than the original network on average.


Author(s):  
Yuliang Liu ◽  
Sheng Zhang ◽  
Lianwen Jin ◽  
Lele Xie ◽  
Yaqiang Wu ◽  
...  

Scene text in the wild is commonly presented with high variant characteristics. Using quadrilateral bounding box to localize the text instance is nearly indispensable for detection methods. However, recent researches reveal that introducing quadrilateral bounding box for scene text detection will bring a label confusion issue which is easily overlooked, and this issue may significantly undermine the detection performance. To address this issue, in this paper, we propose a novel method called Sequential-free Box Discretization (SBD) by discretizing the bounding box into key edges (KE) which can further derive more effective methods to improve detection performance. Experiments showed that the proposed method can outperform state-of-the-art methods in many popular scene text benchmarks, including ICDAR 2015, MLT, and MSRA-TD500. Ablation study also showed that simply integrating the SBD into Mask R-CNN framework, the detection performance can be substantially improved. Furthermore, an experiment on the general object dataset HRSC2016 (multi-oriented ships) showed that our method can outperform recent state-of-the-art methods by a large margin, demonstrating its powerful generalization ability.


2021 ◽  
Vol 42 ◽  
pp. 100434
Author(s):  
Ednawati Rainarli ◽  
Suprapto ◽  
Wahyono

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Weijia Wu ◽  
Jici Xing ◽  
Cheng Yang ◽  
Yuxing Wang ◽  
Hong Zhou

The performance of text detection is crucial for the subsequent recognition task. Currently, the accuracy of the text detector still needs further improvement, particularly those with irregular shapes in a complex environment. We propose a pixel-wise method based on instance segmentation for scene text detection. Specifically, a text instance is split into five components: a Text Skeleton and four Directional Pixel Regions, then restoring itself based on these elements and receiving supplementary information from other areas when one fails. Besides, a Confidence Scoring Mechanism is designed to filter characters similar to text instances. Experiments on several challenging benchmarks demonstrate that our method achieves state-of-the-art results in scene text detection with an F-measure of 84.6% on Total-Text and 86.3% on CTW1500.


Author(s):  
Rajae Moumen ◽  
Raddouane Chiheb ◽  
Rdouan Faizi

The aim of this research is to propose a fully convolutional approach to address the problem of real-time scene text detection for Arabic language. Text detection is performed using a two-steps multi-scale approach. The first step uses light-weighted fully convolutional network: TextBlockDetector FCN, an adaptation of VGG-16 to eliminate non-textual elements, localize wide scale text and give text scale estimation. The second step determines narrow scale range of text using fully convolutional network for maximum performance. To evaluate the system, we confront the results of the framework to the results obtained with single VGG-16 fully deployed for text detection in one-shot; in addition to previous results in the state-of-the-art. For training and testing, we initiate a dataset of 575 images manually processed along with data augmentation to enrich training process. The system scores a precision of 0.651 vs 0.64 in the state-of-the-art and a FPS of 24.3 vs 31.7 for a VGG-16 fully deployed.


Information ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 524
Author(s):  
Yuan Li ◽  
Mayire Ibrayim ◽  
Askar Hamdulla

In the last years, methods for detecting text in real scenes have made significant progress with an increase in neural networks. However, due to the limitation of the receptive field of the central nervous system and the simple representation of text by using rectangular bounding boxes, the previous methods may be insufficient for working with more challenging instances of text. To solve this problem, this paper proposes a scene text detection network based on cross-scale feature fusion (CSFF-Net). The framework is based on the lightweight backbone network Resnet, and the feature learning is enhanced by embedding the depth weighted convolution module (DWCM) while retaining the original feature information extracted by CNN. At the same time, the 3D-Attention module is also introduced to merge the context information of adjacent areas, so as to refine the features in each spatial size. In addition, because the Feature Pyramid Network (FPN) cannot completely solve the interdependence problem by simple element-wise addition to process cross-layer information flow, this paper introduces a Cross-Level Feature Fusion Module (CLFFM) based on FPN, which is called Cross-Level Feature Pyramid Network (Cross-Level FPN). The proposed CLFFM can better handle cross-layer information flow and output detailed feature information, thus improving the accuracy of text region detection. Compared to the original network framework, the framework provides a more advanced performance in detecting text images of complex scenes, and extensive experiments on three challenging datasets validate the realizability of our approach.


2021 ◽  
Vol 6 (1) ◽  
pp. 1-5
Author(s):  
Zobeir Raisi ◽  
Mohamed A. Naiel ◽  
Paul Fieguth ◽  
Steven Wardell ◽  
John Zelek

The reported accuracy of recent state-of-the-art text detection methods, mostly deep learning approaches, is in the order of 80% to 90% on standard benchmark datasets. These methods have relaxed some of the restrictions of structured text and environment (i.e., "in the wild") which are usually required for classical OCR to properly function. Even with this relaxation, there are still circumstances where these state-of-the-art methods fail.  Several remaining challenges in wild images, like in-plane-rotation, illumination reflection, partial occlusion, complex font styles, and perspective distortion, cause exciting methods to perform poorly. In order to evaluate current approaches in a formal way, we standardize the datasets and metrics for comparison which had made comparison between these methods difficult in the past. We use three benchmark datasets for our evaluations: ICDAR13, ICDAR15, and COCO-Text V2.0. The objective of the paper is to quantify the current shortcomings and to identify the challenges for future text detection research.


2020 ◽  
Vol 34 (07) ◽  
pp. 12160-12167 ◽  
Author(s):  
Hao Wang ◽  
Pu Lu ◽  
Hui Zhang ◽  
Mingkun Yang ◽  
Xiang Bai ◽  
...  

Recently, end-to-end text spotting that aims to detect and recognize text from cluttered images simultaneously has received particularly growing interest in computer vision. Different from the existing approaches that formulate text detection as bounding box extraction or instance segmentation, we localize a set of points on the boundary of each text instance. With the representation of such boundary points, we establish a simple yet effective scheme for end-to-end text spotting, which can read the text of arbitrary shapes. Experiments on three challenging datasets, including ICDAR2015, TotalText and COCO-Text demonstrate that the proposed method consistently surpasses the state-of-the-art in both scene text detection and end-to-end text recognition tasks.


Sign in / Sign up

Export Citation Format

Share Document