scholarly journals Modelling Diversity of Solutions

2020 ◽  
Vol 34 (02) ◽  
pp. 1528-1535
Author(s):  
Linnea Ingmar ◽  
Maria Garcia de la Banda ◽  
Peter J. Stuckey ◽  
Guido Tack

For many combinatorial problems, finding a single solution is not enough. This is clearly the case for multi-objective optimization problems, as they have no single “best solution” and, thus, it is useful to find a representation of the non-dominated solutions (the Pareto frontier). However, it also applies to single objective optimization problems, where one may be interested in finding several (close to) optimal solutions that illustrate some form of diversity. The same applies to satisfaction problems. This is because models usually idealize the problem in some way, and a diverse pool of solutions may provide a better choice with respect to considerations that are omitted or simplified in the model. This paper describes a general framework for finding k diverse solutions to a combinatorial problem (be it satisfaction, single-objective or multi-objective), various approaches to solve problems in the framework, their implementations, and an experimental evaluation of their practicality.

2009 ◽  
Vol 12 (11) ◽  
pp. 11-26
Author(s):  
Hao Van Tran ◽  
Thong Huu Nguyen

We consider a class of single-objective optimization problems which haves the character: there is a fixed number k (1≤k<n) that is independent of the size n of the problem such that if we only need to change values of k variables then it has the ability to find a better solution than the current one, let us call it Ok. In this paper, we propose a new numerical optimization technique, Search Via Probability (SVP) algorithm, for solving single objective optimization problems of the class Ok. The SVP algorithm uses probabilities to control the process of searching for optimal solutions. We calculate probabilities of the appearance of a better solution than the current one on each of iterations, and on the performance of SVP algorithm we create good conditions for its appearance. We tested this approach by implementing the SVP algorithm on some test single-objective and multi objective optimization problems, and we found good and very stable results.


Author(s):  
Yousef Sardahi ◽  
Yousef Naranjani ◽  
Wei Liang ◽  
Jian-Qiao Sun ◽  
Carlos Hernandez ◽  
...  

Controls are often designed to meet different and conflicting goals. Consider the well-known LQR optimal control. The performance index contains a response measure and a control penalty, which are conflicting requirements. Proper linear or nonlinear combinations of the conflicting objective functions have led to single objective optimization problems. However, such a single objective optimization is dependent on the combination algorithm, and only provides a narrow window of all possible optimal solutions that a system may have. Multi-objective optimization provides a set of optimal solutions, known as Pareto set. There have been many studies of search algorithms for Pareto sets of multi-objective optimization problems for complex dynamical systems. Recently, the simple cell mapping (SCM) method due to C.S. Hsu has been found to be a highly effective tool to compute Pareto sets. This paper applies the SCM method to several control design problems of linear and nonlinear dynamical systems. The results of the work are very exciting to report.


Author(s):  
Huizhuo Cao ◽  
Xuemei Li ◽  
Vikrant Vaze ◽  
Xueyan Li

Multi-objective pricing of high-speed rail (HSR) passenger fares becomes a challenge when the HSR operator needs to deal with multiple conflicting objectives. Although many studies have tackled the challenge of calculating the optimal fares over railway networks, none of them focused on characterizing the trade-offs between multiple objectives under multi-modal competition. We formulate the multi-objective HSR fare optimization problem over a linear network by introducing the epsilon-constraint method within a bi-level programming model and develop an iterative algorithm to solve this model. This is the first HSR pricing study to use an epsilon-constraint methodology. We obtain two single-objective solutions and four multi-objective solutions and compare them on a variety of metrics. We also derive the Pareto frontier between the objectives of profit and passenger welfare to enable the operator to choose the best trade-off. Our results based on computational experiments with Beijing–Shanghai regional network provide several new insights. First, we find that small changes in fares can lead to a significant improvement in passenger welfare with no reduction in profitability under multi-objective optimization. Second, multi-objective optimization solutions show considerable improvements over the single-objective optimization solutions. Third, Pareto frontier enables decision-makers to make more informed decisions about choosing the best trade-offs. Overall, the explicit modeling of multiple objectives leads to better pricing solutions, which have the potential to guide pricing decisions for the HSR operators.


2012 ◽  
Vol 433-440 ◽  
pp. 2808-2816
Author(s):  
Jian Jin Zheng ◽  
You Shen Xia

This paper presents a new interactive neural network for solving constrained multi-objective optimization problems. The constrained multi-objective optimization problem is reformulated into two constrained single objective optimization problems and two neural networks are designed to obtain the optimal weight and the optimal solution of the two optimization problems respectively. The proposed algorithm has a low computational complexity and is easy to be implemented. Moreover, the proposed algorithm is well applied to the design of digital filters. Computed results illustrate the good performance of the proposed algorithm.


Author(s):  
Eliot Rudnick-Cohen

Abstract Multi-objective decision making problems can sometimes involve an infinite number of objectives. In this paper, an approach is presented for solving multi-objective optimization problems containing an infinite number of parameterized objectives, termed “infinite objective optimization”. A formulation is given for infinite objective optimization problems and an approach for checking whether a Pareto frontier is a solution to this formulation is detailed. Using this approach, a new sampling based approach is developed for solving infinite objective optimization problems. The new approach is tested on several different example problems and is shown to be faster and perform better than a brute force approach.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 465 ◽  
Author(s):  
Peng Ni ◽  
Jiale Gao ◽  
Yafei Song ◽  
Wen Quan ◽  
Qinghua Xing

In the real world, multi-objective optimization problems always change over time in most projects. Once the environment changes, the distribution of the optimal solutions would also be changed in decision space. Sometimes, such change may obey the law of symmetry, i.e., the minimum of the objective function in such environment is its maximum in another environment. In such cases, the optimal solutions keep unchanged or vibrate in a small range. However, in most cases, they do not obey the law of symmetry. In order to continue the search that maintains previous search advantages in the changed environment, some prediction strategy would be used to predict the operation position of the Pareto set. Because of this, the segment and multi-directional prediction is proposed in this paper, which consists of three mechanisms. First, by segmenting the optimal solutions set, the prediction about the changes in the distribution of the Pareto front can be ensured. Second, by introducing the cloud theory, the distance error of direction prediction can be offset effectively. Third, by using extra angle search, the angle error of prediction caused by the Pareto set nonlinear variation can also be offset effectively. Finally, eight benchmark problems were used to verify the performance of the proposed algorithm and compared algorithms. The results indicate that the algorithm proposed in this paper has good convergence and distribution, as well as a quick response ability to the changed environment.


Author(s):  
Samira El Moumen ◽  
Siham Ouhimmou

Various engineering design problems are formulated as constrained multi-objective optimization problems. One of the relevant and popular methods that deals with these problems is the weighted method. However, the major inconvenience with its application is that it does not yield a well distributed set. In this study, the use of the Normal Boundary Intersection approach (NBI) is proposed, which is effective in obtaining an evenly distributed set of points in the Pareto set. Given an evenly distributed set of weights, it can be strictly shown that this approach is absolutely independent of the relative scales of the functions. Moreover, in order to ensure the convergence to the Global Pareto frontier, NBI approach has to be aligned with a global optimization method. Thus, the following paper suggests NBI-Simulated Annealing Simultaneous Perturbation method (NBI-SASP) as a new method for multiobjective optimization problems. The study shall test also the applicability of the NBI-SASP approach using different engineering multi-objective optimization problems and the findings shall be compared to a method of reference (NSGA). Results clearly demonstrate that the suggested method is more efficient when it comes to search ability and it provides a well distributed global Pareto Front.


Author(s):  
Nguye Long ◽  
Bui Thu Lam

Multi-objectivity has existed in many real-world optimization problems. In most multi-objective cases, objectives are often conflicting, there is no single solution being optimal with regards to all objectives. These problems are called Multi-objective Optimization Problems (MOPs). To date, there have been al large number of methods for solving MOPs including evolutionary methods (namly Multi-objective Evolutionary Algorithms MOEAs). With the use of a population of solutions for searching. MOEAs are naturally suitable for approximating optimal solutions (called the Pareto Optimal Set (POS) or the efficient set). There has been a popular trend in MOEAs considering the role of Decision Makers (DMs) during the optimization process (known as the human-in-loop) for checking, analyzing the results and giving the preference to guide the optimization process. This is call the interactive method.


Author(s):  
Nitin Uniyal ◽  
Sangeeta Pant ◽  
Anuj Kumar

Optimization has been a hot topic due to its inevitably in the development of new algorithms in almost every applied branch of Mathematics. Despite the broadness of optimization techniques in research fields, there is always an open scope of further refinement. We present here an overview of nature-inspired optimization with a subtle background of fundamentals and classification and their reliability applications. An attempt has been made to exhibit the contrast nature of multi objective optimization as compared to single objective optimization. Though there are various techniques to achieve the optimality in optimization problems but nature inspired algorithms have proved to be very efficient and gained special attention in modern research problems. The purpose of this article is to furnish the foundation of few nature inspired optimization techniques and their reliability applications to an interested researcher.


Author(s):  
Weijun Wang ◽  
Stéphane Caro ◽  
Fouad Bennis

In the presence of multiple optimal solutions in multi-modal optimization problems and in multi-objective optimization problems, the designer may be interested in the robustness of those solutions to make a decision. Here, the robustness is related to the sensitivity of the performance functions to uncertainties. The uncertainty sources include the uncertainties in the design variables, in the design environment parameters, in the model of objective functions and in the designer’s preference. There exist many robustness indices in the literature that deal with small variations in the design variables and design environment parameters, but few robustness indices consider large variations. In this paper, a new robustness index is introduced to deal with large variations in the design environment parameters. The proposed index is bounded between zero and one, and measures the probability of a solution to be optimal with respect to the values of the design environment parameters. The larger the robustness index, the more robust the solution with regard to large variations in the design environment parameters. Finally, two illustrative examples are given to highlight the contributions of this paper.


Sign in / Sign up

Export Citation Format

Share Document