Robustness Against Large Variations in Multi-Objective Optimization Problems

Author(s):  
Weijun Wang ◽  
Stéphane Caro ◽  
Fouad Bennis

In the presence of multiple optimal solutions in multi-modal optimization problems and in multi-objective optimization problems, the designer may be interested in the robustness of those solutions to make a decision. Here, the robustness is related to the sensitivity of the performance functions to uncertainties. The uncertainty sources include the uncertainties in the design variables, in the design environment parameters, in the model of objective functions and in the designer’s preference. There exist many robustness indices in the literature that deal with small variations in the design variables and design environment parameters, but few robustness indices consider large variations. In this paper, a new robustness index is introduced to deal with large variations in the design environment parameters. The proposed index is bounded between zero and one, and measures the probability of a solution to be optimal with respect to the values of the design environment parameters. The larger the robustness index, the more robust the solution with regard to large variations in the design environment parameters. Finally, two illustrative examples are given to highlight the contributions of this paper.

2014 ◽  
Vol 984-985 ◽  
pp. 419-424
Author(s):  
P. Sabarinath ◽  
M.R. Thansekhar ◽  
R. Saravanan

Arriving optimal solutions is one of the important tasks in engineering design. Many real-world design optimization problems involve multiple conflicting objectives. The design variables are of continuous or discrete in nature. In general, for solving Multi Objective Optimization methods weight method is preferred. In this method, all the objective functions are converted into a single objective function by assigning suitable weights to each objective functions. The main drawback lies in the selection of proper weights. Recently, evolutionary algorithms are used to find the nondominated optimal solutions called as Pareto optimal front in a single run. In recent years, Non-dominated Sorting Genetic Algorithm II (NSGA-II) finds increasing applications in solving multi objective problems comprising of conflicting objectives because of low computational requirements, elitism and parameter-less sharing approach. In this work, we propose a methodology which integrates NSGA-II and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for solving a two bar truss problem. NSGA-II searches for the Pareto set where two bar truss is evaluated in terms of minimizing the weight of the truss and minimizing the total displacement of the joint under the given load. Subsequently, TOPSIS selects the best compromise solution.


Author(s):  
Weijun Wang ◽  
Stéphane Caro ◽  
Fouad Bennis

The produced power and the thrust force exerted on the wind turbine are two conflicting objectives in the design of a floating horizontal axis wind turbine. Meanwhile, the variations in design variables and design environment parameters are unavoidable. The variations include the small variations in the design variables due to manufacturing errors, and the large variations in the wind speed. Therefore, two robustness indices are introduced in this paper. The first one characterizes the robustness of multi-objective optimization problems against small variations in the design variables and the design environment parameters. The second robustness index characterizes the robustness of multi-objective optimization problems against large variations in the design environment parameters. The robustness of the solutions based on the two robustness indices is treated as a vector defined in the robustness function space. As a result, the designer can compare the robustness of all Pareto optimal solutions and make a decision. Finally, the multi-objective robust optimization design of a fixed-speed horizontal axis wind turbine illustrates the proposed methodology.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 465 ◽  
Author(s):  
Peng Ni ◽  
Jiale Gao ◽  
Yafei Song ◽  
Wen Quan ◽  
Qinghua Xing

In the real world, multi-objective optimization problems always change over time in most projects. Once the environment changes, the distribution of the optimal solutions would also be changed in decision space. Sometimes, such change may obey the law of symmetry, i.e., the minimum of the objective function in such environment is its maximum in another environment. In such cases, the optimal solutions keep unchanged or vibrate in a small range. However, in most cases, they do not obey the law of symmetry. In order to continue the search that maintains previous search advantages in the changed environment, some prediction strategy would be used to predict the operation position of the Pareto set. Because of this, the segment and multi-directional prediction is proposed in this paper, which consists of three mechanisms. First, by segmenting the optimal solutions set, the prediction about the changes in the distribution of the Pareto front can be ensured. Second, by introducing the cloud theory, the distance error of direction prediction can be offset effectively. Third, by using extra angle search, the angle error of prediction caused by the Pareto set nonlinear variation can also be offset effectively. Finally, eight benchmark problems were used to verify the performance of the proposed algorithm and compared algorithms. The results indicate that the algorithm proposed in this paper has good convergence and distribution, as well as a quick response ability to the changed environment.


2015 ◽  
Vol 651-653 ◽  
pp. 1387-1393 ◽  
Author(s):  
Lorenzo Iorio ◽  
Lionel Fourment ◽  
Stephane Marie ◽  
Matteo Strano

The Game Theory is a good method for finding a compromise between two players in a bargaining problem. The Kalai and Smorodinsky (K-S) method is a solution the bargaining problem where players make decisions in order to maximize their own utility, with a cooperative approach. Interesting applications of the K-S method can be found in engineering multi-objective optimization problems, where two or more functions must be minimized. The aim of this paper is to develop an optimization algorithm aimed at rapidly finding the Kalai and Smorodinsky solution, where the objective functions are considered as players in a bargaining problem, avoiding the search for the Pareto front. The approach uses geometrical consideration in the space of the objective functions, starting from the knowledge of the so-called Utopia and Nadir points. An analytical solution is proposed and initially tested with a simple minimization problem based on a known mathematical function. Then, the algorithm is tested (thanks to a user friendly routine built-in the finite element code Forge®) for FEM optimization problem of a wire drawing operation, with the objective of minimizing the pulling force and the material damage. The results of the simulations are compared to previous works done with others methodologies.


2015 ◽  
Vol 23 (1) ◽  
pp. 69-100 ◽  
Author(s):  
Handing Wang ◽  
Licheng Jiao ◽  
Ronghua Shang ◽  
Shan He ◽  
Fang Liu

There can be a complicated mapping relation between decision variables and objective functions in multi-objective optimization problems (MOPs). It is uncommon that decision variables influence objective functions equally. Decision variables act differently in different objective functions. Hence, often, the mapping relation is unbalanced, which causes some redundancy during the search in a decision space. In response to this scenario, we propose a novel memetic (multi-objective) optimization strategy based on dimension reduction in decision space (DRMOS). DRMOS firstly analyzes the mapping relation between decision variables and objective functions. Then, it reduces the dimension of the search space by dividing the decision space into several subspaces according to the obtained relation. Finally, it improves the population by the memetic local search strategies in these decision subspaces separately. Further, DRMOS has good portability to other multi-objective evolutionary algorithms (MOEAs); that is, it is easily compatible with existing MOEAs. In order to evaluate its performance, we embed DRMOS in several state of the art MOEAs to facilitate our experiments. The results show that DRMOS has the advantage in terms of convergence speed, diversity maintenance, and portability when solving MOPs with an unbalanced mapping relation between decision variables and objective functions.


2009 ◽  
Vol 12 (11) ◽  
pp. 11-26
Author(s):  
Hao Van Tran ◽  
Thong Huu Nguyen

We consider a class of single-objective optimization problems which haves the character: there is a fixed number k (1≤k<n) that is independent of the size n of the problem such that if we only need to change values of k variables then it has the ability to find a better solution than the current one, let us call it Ok. In this paper, we propose a new numerical optimization technique, Search Via Probability (SVP) algorithm, for solving single objective optimization problems of the class Ok. The SVP algorithm uses probabilities to control the process of searching for optimal solutions. We calculate probabilities of the appearance of a better solution than the current one on each of iterations, and on the performance of SVP algorithm we create good conditions for its appearance. We tested this approach by implementing the SVP algorithm on some test single-objective and multi objective optimization problems, and we found good and very stable results.


Author(s):  
Yousef Sardahi ◽  
Yousef Naranjani ◽  
Wei Liang ◽  
Jian-Qiao Sun ◽  
Carlos Hernandez ◽  
...  

Controls are often designed to meet different and conflicting goals. Consider the well-known LQR optimal control. The performance index contains a response measure and a control penalty, which are conflicting requirements. Proper linear or nonlinear combinations of the conflicting objective functions have led to single objective optimization problems. However, such a single objective optimization is dependent on the combination algorithm, and only provides a narrow window of all possible optimal solutions that a system may have. Multi-objective optimization provides a set of optimal solutions, known as Pareto set. There have been many studies of search algorithms for Pareto sets of multi-objective optimization problems for complex dynamical systems. Recently, the simple cell mapping (SCM) method due to C.S. Hsu has been found to be a highly effective tool to compute Pareto sets. This paper applies the SCM method to several control design problems of linear and nonlinear dynamical systems. The results of the work are very exciting to report.


2014 ◽  
Vol 599-601 ◽  
pp. 362-367
Author(s):  
Yun Peng ◽  
Ai Min Gong ◽  
Hai Yan Huang

A framework for solving the multi-objective optimization problems of spring in multidisciplinary design environment is advised in this paper. Based on the collaborative optimization (CO) algorithm, a new system level objective function is advised to minimize relative value among the structural mass, the height and the natural vibration frequency. The proposed models were demonstrated with a multi-objective optimization problem of a spring. The optimal design of the spring obtained indicates the great potential of decreasing structural mass and vibration level and increasing natural frequency reserve under the constraints. The analysis progress and results show that the model is feasible and well-suited for using in actual optimization problems of spring design.


2013 ◽  
Vol 21 (1) ◽  
pp. 149-177 ◽  
Author(s):  
Vui Ann Shim ◽  
Kay Chen Tan ◽  
Jun Yong Chia ◽  
Abdullah Al Mamun

Many real-world optimization problems are subjected to uncertainties that may be characterized by the presence of noise in the objective functions. The estimation of distribution algorithm (EDA), which models the global distribution of the population for searching tasks, is one of the evolutionary computation techniques that deals with noisy information. This paper studies the potential of EDAs; particularly an EDA based on restricted Boltzmann machines that handles multi-objective optimization problems in a noisy environment. Noise is introduced to the objective functions in the form of a Gaussian distribution. In order to reduce the detrimental effect of noise, a likelihood correction feature is proposed to tune the marginal probability distribution of each decision variable. The EDA is subsequently hybridized with a particle swarm optimization algorithm in a discrete domain to improve its search ability. The effectiveness of the proposed algorithm is examined via eight benchmark instances with different characteristics and shapes of the Pareto optimal front. The scalability, hybridization, and computational time are rigorously studied. Comparative studies show that the proposed approach outperforms other state of the art algorithms.


Sign in / Sign up

Export Citation Format

Share Document