scholarly journals Adversarial Fence Patrolling: Non-Uniform Policies for Asymmetric Environments

2020 ◽  
Vol 34 (06) ◽  
pp. 10377-10384
Author(s):  
Yaniv Oshrat ◽  
Noa Agmon ◽  
Sarit Kraus

Robot teams are very useful in patrol tasks, where the robots are required to repeatedly visit a target area in order to detect an adversary. In this work we examine the Fence Patrol problem, in which the robots must travel back and forth along an open polyline and the adversary is aware of the robots' patrol strategy. Previous work has suggested non-deterministic patrol schemes, characterized by a uniform policy along the entire area, guaranteeing that the minimal probability of penetration detection throughout the area is maximized. We present a patrol strategy with a non-uniform policy along different points of the fence, based on the location and other properties of the point. We explore this strategy in different kinds of tracks and show that the minimal probability of penetration detection achieved by this non-uniform (variant) policy is higher than former policies. We further consider applying this model in multi-robot scenarios, exploiting robot cooperation to enhance patrol efficiency. We propose novel methods for calculating the variant values, and demonstrate their performance empirically.

Author(s):  
Yiyun Wang ◽  
Hongbing Li

In lumbar puncture surgeries, force and position information throughout the insertion procedure is vital for needle tip localization, because it reflects different tissue properties. Especially in pediatric cases, the changes are always insignificant for surgeons to sense the crucial feeling of loss of resistance. In this study, a robot system is developed to tackle the major clinical difficulties. Four different control algorithms with intention recognition ability are applied on a novel lumbar puncture robot system for better human–robot cooperation. Specific penetration detection based on force and position derivatives captures the feeling of loss of resistance, which is deemed crucial for needle tip location. Kinematic and actuation modeling provides a clear description of the hardware setup. The control algorithm experiment compares the human–robot cooperation performance of proposed algorithms. The experiment also dictates the clear role of designed penetration detection criteria in capturing the penetration, improving the success rate, and ensuring operational safety.


Sign in / Sign up

Export Citation Format

Share Document