scholarly journals Pose-Guided Multi-Granularity Attention Network for Text-Based Person Search

2020 ◽  
Vol 34 (07) ◽  
pp. 11189-11196 ◽  
Author(s):  
Ya Jing ◽  
Chenyang Si ◽  
Junbo Wang ◽  
Wei Wang ◽  
Liang Wang ◽  
...  

Text-based person search aims to retrieve the corresponding person images in an image database by virtue of a describing sentence about the person, which poses great potential for various applications such as video surveillance. Extracting visual contents corresponding to the human description is the key to this cross-modal matching problem. Moreover, correlated images and descriptions involve different granularities of semantic relevance, which is usually ignored in previous methods. To exploit the multilevel corresponding visual contents, we propose a pose-guided multi-granularity attention network (PMA). Firstly, we propose a coarse alignment network (CA) to select the related image regions to the global description by a similarity-based attention. To further capture the phrase-related visual body part, a fine-grained alignment network (FA) is proposed, which employs pose information to learn latent semantic alignment between visual body part and textual noun phrase. To verify the effectiveness of our model, we perform extensive experiments on the CUHK Person Description Dataset (CUHK-PEDES) which is currently the only available dataset for text-based person search. Experimental results show that our approach outperforms the state-of-the-art methods by 15 % in terms of the top-1 metric.

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5279
Author(s):  
Yang Li ◽  
Huahu Xu ◽  
Junsheng Xiao

Language-based person search retrieves images of a target person using natural language description and is a challenging fine-grained cross-modal retrieval task. A novel hybrid attention network is proposed for the task. The network includes the following three aspects: First, a cubic attention mechanism for person image, which combines cross-layer spatial attention and channel attention. It can fully excavate both important midlevel details and key high-level semantics to obtain better discriminative fine-grained feature representation of a person image. Second, a text attention network for language description, which is based on bidirectional LSTM (BiLSTM) and self-attention mechanism. It can better learn the bidirectional semantic dependency and capture the key words of sentences, so as to extract the context information and key semantic features of the language description more effectively and accurately. Third, a cross-modal attention mechanism and a joint loss function for cross-modal learning, which can pay more attention to the relevant parts between text and image features. It can better exploit both the cross-modal and intra-modal correlation and can better solve the problem of cross-modal heterogeneity. Extensive experiments have been conducted on the CUHK-PEDES dataset. Our approach obtains higher performance than state-of-the-art approaches, demonstrating the advantage of the approach we propose.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Shaoqi Hou ◽  
Chunhui Liu ◽  
Kangning Yin ◽  
Yiyin Ding ◽  
Zhiguo Wang ◽  
...  

Person Re-identification (Re-ID) is aimed at solving the matching problem of the same pedestrian at a different time and in different places. Due to the cross-device condition, the appearance of different pedestrians may have a high degree of similarity; at this time, using the global features of pedestrians to match often cannot achieve good results. In order to solve these problems, we designed a Spatial Attention Network Guided by Attribute Label (SAN-GAL), which is a dual-trace network containing both attribute classification and Re-ID. Different from the previous approach of simply adding a branch of attribute binary classification network, our SAN-GAL is mainly divided into two connecting steps. First, with attribute labels as guidance, we generate Attribute Attention Heat map (AAH) through Grad-CAM algorithm to accurately locate fine-grained attribute areas of pedestrians. Then, the Attribute Spatial Attention Module (ASAM) is constructed according to the AHH which is taken as the prior knowledge and introduced into the Re-ID network to assist in the discrimination of the Re-ID task. In particular, our SAN-GAL network can integrate the local attribute information and global ID information of pedestrians without introducing additional attribute region annotation, which has good flexibility and adaptability. The test results on Market1501 and DukeMTMC-reID show that our SAN-GAL can achieve good results and can achieve 85.8% Rank-1 accuracy on DukeMTMC-reID dataset, which is obviously competitive compared with most Re-ID algorithms.


Author(s):  
Jinwei Qi ◽  
Yuxin Peng ◽  
Yuxin Yuan

With the rapid growth of multimedia data, such as image and text, it is a highly challenging problem to effectively correlate and retrieve the data of different media types. Naturally, when correlating an image with textual description, people focus on not only the alignment between discriminative image regions and key words, but also the relations lying in the visual and textual context. Relation understanding is essential for cross-media correlation learning, which is ignored by prior cross-media retrieval works. To address the above issue, we propose Cross-media Relation Attention Network (CRAN) with multi-level alignment. First, we propose visual-language relation attention model to explore both fine-grained patches and their relations of different media types. We aim to not only exploit cross-media fine-grained local information, but also capture the intrinsic relation information, which can provide complementary hints for correlation learning. Second, we propose cross-media multi-level alignment to explore global, local and relation alignments across different media types, which can mutually boost to learn more precise cross-media correlation. We conduct experiments on 2 cross-media datasets, and compare with 10 state-of-the-art methods to verify the effectiveness of proposed approach.


1995 ◽  
Vol 38 (5) ◽  
pp. 1126-1142 ◽  
Author(s):  
Jeffrey W. Gilger

This paper is an introduction to behavioral genetics for researchers and practioners in language development and disorders. The specific aims are to illustrate some essential concepts and to show how behavioral genetic research can be applied to the language sciences. Past genetic research on language-related traits has tended to focus on simple etiology (i.e., the heritability or familiality of language skills). The current state of the art, however, suggests that great promise lies in addressing more complex questions through behavioral genetic paradigms. In terms of future goals it is suggested that: (a) more behavioral genetic work of all types should be done—including replications and expansions of preliminary studies already in print; (b) work should focus on fine-grained, theory-based phenotypes with research designs that can address complex questions in language development; and (c) work in this area should utilize a variety of samples and methods (e.g., twin and family samples, heritability and segregation analyses, linkage and association tests, etc.).


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4486
Author(s):  
Niall O’Mahony ◽  
Sean Campbell ◽  
Lenka Krpalkova ◽  
Anderson Carvalho ◽  
Joseph Walsh ◽  
...  

Fine-grained change detection in sensor data is very challenging for artificial intelligence though it is critically important in practice. It is the process of identifying differences in the state of an object or phenomenon where the differences are class-specific and are difficult to generalise. As a result, many recent technologies that leverage big data and deep learning struggle with this task. This review focuses on the state-of-the-art methods, applications, and challenges of representation learning for fine-grained change detection. Our research focuses on methods of harnessing the latent metric space of representation learning techniques as an interim output for hybrid human-machine intelligence. We review methods for transforming and projecting embedding space such that significant changes can be communicated more effectively and a more comprehensive interpretation of underlying relationships in sensor data is facilitated. We conduct this research in our work towards developing a method for aligning the axes of latent embedding space with meaningful real-world metrics so that the reasoning behind the detection of change in relation to past observations may be revealed and adjusted. This is an important topic in many fields concerned with producing more meaningful and explainable outputs from deep learning and also for providing means for knowledge injection and model calibration in order to maintain user confidence.


Author(s):  
Anil S. Baslamisli ◽  
Partha Das ◽  
Hoang-An Le ◽  
Sezer Karaoglu ◽  
Theo Gevers

AbstractIn general, intrinsic image decomposition algorithms interpret shading as one unified component including all photometric effects. As shading transitions are generally smoother than reflectance (albedo) changes, these methods may fail in distinguishing strong photometric effects from reflectance variations. Therefore, in this paper, we propose to decompose the shading component into direct (illumination) and indirect shading (ambient light and shadows) subcomponents. The aim is to distinguish strong photometric effects from reflectance variations. An end-to-end deep convolutional neural network (ShadingNet) is proposed that operates in a fine-to-coarse manner with a specialized fusion and refinement unit exploiting the fine-grained shading model. It is designed to learn specific reflectance cues separated from specific photometric effects to analyze the disentanglement capability. A large-scale dataset of scene-level synthetic images of outdoor natural environments is provided with fine-grained intrinsic image ground-truths. Large scale experiments show that our approach using fine-grained shading decompositions outperforms state-of-the-art algorithms utilizing unified shading on NED, MPI Sintel, GTA V, IIW, MIT Intrinsic Images, 3DRMS and SRD datasets.


Author(s):  
Jonas Austerjost ◽  
Robert Söldner ◽  
Christoffer Edlund ◽  
Johan Trygg ◽  
David Pollard ◽  
...  

Machine vision is a powerful technology that has become increasingly popular and accurate during the last decade due to rapid advances in the field of machine learning. The majority of machine vision applications are currently found in consumer electronics, automotive applications, and quality control, yet the potential for bioprocessing applications is tremendous. For instance, detecting and controlling foam emergence is important for all upstream bioprocesses, but the lack of robust foam sensing often leads to batch failures from foam-outs or overaddition of antifoam agents. Here, we report a new low-cost, flexible, and reliable foam sensor concept for bioreactor applications. The concept applies convolutional neural networks (CNNs), a state-of-the-art machine learning system for image processing. The implemented method shows high accuracy for both binary foam detection (foam/no foam) and fine-grained classification of foam levels.


2021 ◽  
Vol 2 (2) ◽  
pp. 1-18
Author(s):  
Hongchao Gao ◽  
Yujia Li ◽  
Jiao Dai ◽  
Xi Wang ◽  
Jizhong Han ◽  
...  

Recognizing irregular text from natural scene images is challenging due to the unconstrained appearance of text, such as curvature, orientation, and distortion. Recent recognition networks regard this task as a text sequence labeling problem and most networks capture the sequence only from a single-granularity visual representation, which to some extent limits the performance of recognition. In this article, we propose a hierarchical attention network to capture multi-granularity deep local representations for recognizing irregular scene text. It consists of several hierarchical attention blocks, and each block contains a Local Visual Representation Module (LVRM) and a Decoder Module (DM). Based on the hierarchical attention network, we propose a scene text recognition network. The extensive experiments show that our proposed network achieves the state-of-the-art performance on several benchmark datasets including IIIT-5K, SVT, CUTE, SVT-Perspective, and ICDAR datasets under shorter training time.


Author(s):  
Siva Reddy ◽  
Mirella Lapata ◽  
Mark Steedman

In this paper we introduce a novel semantic parsing approach to query Freebase in natural language without requiring manual annotations or question-answer pairs. Our key insight is to represent natural language via semantic graphs whose topology shares many commonalities with Freebase. Given this representation, we conceptualize semantic parsing as a graph matching problem. Our model converts sentences to semantic graphs using CCG and subsequently grounds them to Freebase guided by denotations as a form of weak supervision. Evaluation experiments on a subset of the Free917 and WebQuestions benchmark datasets show our semantic parser improves over the state of the art.


Sign in / Sign up

Export Citation Format

Share Document