Answer Sets and the Language of Answer Set Programming

AI Magazine ◽  
2016 ◽  
Vol 37 (3) ◽  
pp. 7-12 ◽  
Author(s):  
Vladimir Lifschitz

Answer set programming is a declarative programming paradigm based on the answer set semantics of logic programs. This introductory article provides the mathematical background for the discussion of answer set programming in other contributions to this special issue.

2004 ◽  
Vol 4 (3) ◽  
pp. 325-354 ◽  
Author(s):  
MAURICIO OSORIO ◽  
JUAN A. NAVARRO ◽  
JOSÉ ARRAZOLA

We present some applications of intermediate logics in the field of Answer Set Programming (ASP). A brief, but comprehensive introduction to the answer set semantics, intuitionistic and other intermediate logics is given. Some equivalence notions and their applications are discussed. Some results on intermediate logics are shown, and applied later to prove properties of answer sets. A characterization of answer sets for logic programs with nested expressions is provided in terms of intuitionistic provability, generalizing a recent result given by Pearce. It is known that the answer set semantics for logic programs with nested expressions may select non-minimal models. Minimal models can be very important in some applications, therefore we studied them; in particular we obtain a characterization, in terms of intuitionistic logic, of answer sets which are also minimal models. We show that the logic G3 characterizes the notion of strong equivalence between programs under the semantic induced by these models. Finally we discuss possible applications and consequences of our results. They clearly state interesting links between ASP and intermediate logics, which might bring research in these two areas together.


2010 ◽  
Vol 10 (4-6) ◽  
pp. 531-545 ◽  
Author(s):  
YISONG WANG ◽  
JIA-HUAI YOU ◽  
LI YAN YUAN ◽  
YI-DONG SHEN

AbstractDescription Logic Programs (dl-programs) proposed by Eiter et al. constitute an elegant yet powerful formalism for the integration of answer set programming with description logics, for the Semantic Web. In this paper, we generalize the notions of completion and loop formulas of logic programs to description logic programs and show that the answer sets of a dl-program can be precisely captured by the models of its completion and loop formulas. Furthermore, we propose a new, alternative semantics for dl-programs, called the canonical answer set semantics, which is defined by the models of completion that satisfy what are called canonical loop formulas. A desirable property of canonical answer sets is that they are free of circular justifications. Some properties of canonical answer sets are also explored.


2015 ◽  
Vol 16 (4) ◽  
pp. 465-497 ◽  
Author(s):  
REMI BROCHENIN ◽  
MARCO MARATEA ◽  
YULIYA LIERLER

AbstractAnswer set programming is a declarative programming paradigm oriented towards difficult combinatorial search problems. A fundamental task in answer set programming is to compute stable models, i.e., solutions of logic programs. Answer set solvers are the programs that perform this task. The problem of deciding whether a disjunctive program has a stable model is ΣP2-complete. The high complexity of reasoning within disjunctive logic programming is responsible for few solvers capable of dealing with such programs, namely dlv, gnt, cmodels, clasp and wasp. In this paper, we show that transition systems introduced by Nieuwenhuis, Oliveras, and Tinelli to model and analyze satisfiability solvers can be adapted for disjunctive answer set solvers. Transition systems give a unifying perspective and bring clarity in the description and comparison of solvers. They can be effectively used for analyzing, comparing and proving correctness of search algorithms as well as inspiring new ideas in the design of disjunctive answer set solvers. In this light, we introduce a general template, which accounts for major techniques implemented in disjunctive solvers. We then illustrate how this general template captures solvers dlv, gnt, and cmodels. We also show how this framework provides a convenient tool for designing new solving algorithms by means of combinations of techniques employed in different solvers.


2015 ◽  
Vol 15 (4-5) ◽  
pp. 495-510 ◽  
Author(s):  
JOHANNES K. FICHTE ◽  
MIROSŁAW TRUSZCZYŃSKI ◽  
STEFAN WOLTRAN

AbstractDisjunctive Answer Set Programming is a powerful declarative programming paradigm with complexity beyond NP. Identifying classes of programs for which the consistency problem is in NP is of interest from the theoretical standpoint and can potentially lead to improvements in the design of answer set programming solvers. One of such classes consists of dual-normal programs, where the number of positive body atoms in proper rules is at most one. Unlike other classes of programs, dual-normal programs have received little attention so far. In this paper we study this class. We relate dual-normal programs to propositional theories and to normal programs by presenting several inter-translations. With the translation from dual-normal to normal programs at hand, we introduce the novel class of body-cycle free programs, which are in many respects dual to head-cycle free programs. We establish the expressive power of dual-normal programs in terms of SE- and UE-models, and compare them to normal programs. We also discuss the complexity of deciding whether dual-normal programs are strongly and uniformly equivalent.


2007 ◽  
Vol 29 ◽  
pp. 353-389 ◽  
Author(s):  
T. C. Son ◽  
E. Pontelli ◽  
P. H. Tu

In this paper, we present two alternative approaches to defining answer sets for logic programs with arbitrary types of abstract constraint atoms (c-atoms). These approaches generalize the fixpoint-based and the level mapping based answer set semantics of normal logic programs to the case of logic programs with arbitrary types of c-atoms. The results are four different answer set definitions which are equivalent when applied to normal logic programs. The standard fixpoint-based semantics of logic programs is generalized in two directions, called answer set by reduct and answer set by complement. These definitions, which differ from each other in the treatment of negation-as-failure (naf) atoms, make use of an immediate consequence operator to perform answer set checking, whose definition relies on the notion of conditional satisfaction of c-atoms w.r.t. a pair of interpretations. The other two definitions, called strongly and weakly well-supported models, are generalizations of the notion of well-supported models of normal logic programs to the case of programs with c-atoms. As for the case of fixpoint-based semantics, the difference between these two definitions is rooted in the treatment of naf atoms. We prove that answer sets by reduct (resp. by complement) are equivalent to weakly (resp. strongly) well-supported models of a program, thus generalizing the theorem on the correspondence between stable models and well-supported models of a normal logic program to the class of programs with c-atoms. We show that the newly defined semantics coincide with previously introduced semantics for logic programs with monotone c-atoms, and they extend the original answer set semantics of normal logic programs. We also study some properties of answer sets of programs with c-atoms, and relate our definitions to several semantics for logic programs with aggregates presented in the literature.


2018 ◽  
Vol 19 (2) ◽  
pp. 262-289 ◽  
Author(s):  
ELIAS MARCOPOULOS ◽  
YUANLIN ZHANG

AbstractRecent progress in logic programming (e.g. the development of the answer set programming (ASP) paradigm) has made it possible to teach it to general undergraduate and even middle/high school students. Given the limited exposure of these students to computer science, the complexity of downloading, installing, and using tools for writing logic programs could be a major barrier for logic programming to reach a much wider audience. We developed onlineSPARC, an online ASP environment with a self-contained file system and a simple interface. It allows users to type/edit logic programs and perform several tasks over programs, including asking a query to a program, getting the answer sets of a program, and producing a drawing/animation based on the answer sets of a program.


AI Magazine ◽  
2016 ◽  
Vol 37 (3) ◽  
pp. 5-6 ◽  
Author(s):  
Gerhard Brewka ◽  
Thomas Eiter ◽  
Miroslaw Truszczynski

This editorial introduces answer set programming, a vibrant research area in computational knowledge representation and declarative programming. We give a brief overview of the articles that form this special issue on answer set programming and of the main topics they discuss.


2006 ◽  
Vol 6 (1-2) ◽  
pp. 61-106 ◽  
Author(s):  
KATHRIN KONCZAK ◽  
THOMAS LINKE ◽  
TORSTEN SCHAUB

We investigate the usage of rule dependency graphs and their colorings for characterizing and computing answer sets of logic programs. This approach provides us with insights into the interplay between rules when inducing answer sets. We start with different characterizations of answer sets in terms of totally colored dependency graphs that differ in graph-theoretical aspects. We then develop a series of operational characterizations of answer sets in terms of operators on partial colorings. In analogy to the notion of a derivation in proof theory, our operational characterizations are expressed as (non-deterministically formed) sequences of colorings, turning an uncolored graph into a totally colored one. In this way, we obtain an operational framework in which different combinations of operators result in different formal properties. Among others, we identify the basic strategy employed by the noMoRe system and justify its algorithmic approach. Furthermore, we distinguish operations corresponding to Fitting's operator as well as to well-founded semantics.


2019 ◽  
Vol 19 (04) ◽  
pp. 603-628 ◽  
Author(s):  
FRANCESCO CALIMERI ◽  
SIMONA PERRI ◽  
JESSICA ZANGARI

AbstractAnswer Set Programming (ASP) is a purely declarative formalism developed in the field of logic programming and non-monotonic reasoning: computational problems are encoded by logic programs whose answer sets, corresponding to solutions, are computed by an ASP system. Different, semantically equivalent, programs can be defined for the same problem; however, performance of systems evaluating them might significantly vary. We propose an approach for automatically transforming an input logic program into an equivalent one that can be evaluated more efficiently. One can make use of existing tree-decomposition techniques for rewriting selected rules into a set of multiple ones; the idea is to guide and adaptively apply them on the basis of proper new heuristics, to obtain a smart rewriting algorithm to be integrated into an ASP system. The method is rather general: it can be adapted to any system and implement different preference policies. Furthermore, we define a set of new heuristics tailored at optimizing grounding, one of the main phases of the ASP computation; we use them in order to implement the approach into the ASP systemDLV, in particular into its grounding subsystemℐ-DLV, and carry out an extensive experimental activity for assessing the impact of the proposal.


2008 ◽  
Vol 8 (2) ◽  
pp. 217-234 ◽  
Author(s):  
STEFAN WOLTRAN

AbstractLogic programming under the answer-set semantics nowadays deals with numerous different notions of program equivalence. This is due to the fact that equivalence for substitution (known as strong equivalence) and ordinary equivalence are different concepts. The former holds, given programs P and Q, iff P can be faithfully replaced by Q within any context R, while the latter holds iff P and Q provide the same output, that is, they have the same answer sets. Notions in between strong and ordinary equivalence have been introduced as theoretical tools to compare incomplete programs and are defined by either restricting the syntactic structure of the considered context programs R or by bounding the set $\A$ of atoms allowed to occur in R (relativized equivalence). For the latter approach, different $\A$ yield properly different equivalence notions, in general. For the former approach, however, it turned out that any “reasonable” syntactic restriction to R coincides with either ordinary, strong, or uniform equivalence (for uniform equivalence, the context ranges over arbitrary sets of facts, rather than program rules). In this paper, we propose a parameterization for equivalence notions which takes care of both such kinds of restrictions simultaneously by bounding, on the one hand, the atoms which are allowed to occur in the rule heads of the context and, on the other hand, the atoms which are allowed to occur in the rule bodies of the context. We introduce a general semantical characterization which includes known ones as SE-models (for strong equivalence) or UE-models (for uniform equivalence) as special cases. Moreover, we provide complexity bounds for the problem in question and sketch a possible implementation method making use of dedicated systems for checking ordinary equivalence.


Sign in / Sign up

Export Citation Format

Share Document