scholarly journals A Semantic Characterization ASP Base Revision

2019 ◽  
Vol 66 ◽  
pp. 989-1029
Author(s):  
Laurent Garcia ◽  
Claire Lefèvre ◽  
Igor Stéphan ◽  
Odile Papini ◽  
Éric Würbel

The paper deals with base revision for Answer Set Programming (ASP). Base revision in classical logic is done by the removal of formulas. Exploiting the non-monotonicity of ASP allows one to propose other revision strategies, namely addition strategy or removal and/or addition strategy. These strategies allow one to define families of rule-based revision operators. The paper presents a semantic characterization of these families of revision operators in terms of answer sets. This semantic characterization allows for equivalently considering the evolution of syntactic logic programs and the evolution of their semantic content. It then studies the logical properties of the proposed operators and gives complexity results.  

Author(s):  
Laurent Garcia ◽  
Claire Lefèvre ◽  
Odile Papini ◽  
Igor Stéphan ◽  
Eric Würbel

Belief base revision has been studied within the answer set programming framework. We go a step further by introducing uncertainty and studying belief base revision when beliefs are represented by possibilistic logic programs under possibilistic answer set semantics and revised by certain input. The paper proposes two approaches of rule-based revision operators and presents their semantic characterization in terms of possibilistic distribution. This semantic characterization allows for equivalently considering the evolution of syntactic logic programs and the evolution of their semantic content. It then studies the logical properties of the proposed operators and gives complexity results.


2004 ◽  
Vol 4 (3) ◽  
pp. 325-354 ◽  
Author(s):  
MAURICIO OSORIO ◽  
JUAN A. NAVARRO ◽  
JOSÉ ARRAZOLA

We present some applications of intermediate logics in the field of Answer Set Programming (ASP). A brief, but comprehensive introduction to the answer set semantics, intuitionistic and other intermediate logics is given. Some equivalence notions and their applications are discussed. Some results on intermediate logics are shown, and applied later to prove properties of answer sets. A characterization of answer sets for logic programs with nested expressions is provided in terms of intuitionistic provability, generalizing a recent result given by Pearce. It is known that the answer set semantics for logic programs with nested expressions may select non-minimal models. Minimal models can be very important in some applications, therefore we studied them; in particular we obtain a characterization, in terms of intuitionistic logic, of answer sets which are also minimal models. We show that the logic G3 characterizes the notion of strong equivalence between programs under the semantic induced by these models. Finally we discuss possible applications and consequences of our results. They clearly state interesting links between ASP and intermediate logics, which might bring research in these two areas together.


2018 ◽  
Vol 19 (2) ◽  
pp. 262-289 ◽  
Author(s):  
ELIAS MARCOPOULOS ◽  
YUANLIN ZHANG

AbstractRecent progress in logic programming (e.g. the development of the answer set programming (ASP) paradigm) has made it possible to teach it to general undergraduate and even middle/high school students. Given the limited exposure of these students to computer science, the complexity of downloading, installing, and using tools for writing logic programs could be a major barrier for logic programming to reach a much wider audience. We developed onlineSPARC, an online ASP environment with a self-contained file system and a simple interface. It allows users to type/edit logic programs and perform several tasks over programs, including asking a query to a program, getting the answer sets of a program, and producing a drawing/animation based on the answer sets of a program.


2006 ◽  
Vol 6 (1-2) ◽  
pp. 61-106 ◽  
Author(s):  
KATHRIN KONCZAK ◽  
THOMAS LINKE ◽  
TORSTEN SCHAUB

We investigate the usage of rule dependency graphs and their colorings for characterizing and computing answer sets of logic programs. This approach provides us with insights into the interplay between rules when inducing answer sets. We start with different characterizations of answer sets in terms of totally colored dependency graphs that differ in graph-theoretical aspects. We then develop a series of operational characterizations of answer sets in terms of operators on partial colorings. In analogy to the notion of a derivation in proof theory, our operational characterizations are expressed as (non-deterministically formed) sequences of colorings, turning an uncolored graph into a totally colored one. In this way, we obtain an operational framework in which different combinations of operators result in different formal properties. Among others, we identify the basic strategy employed by the noMoRe system and justify its algorithmic approach. Furthermore, we distinguish operations corresponding to Fitting's operator as well as to well-founded semantics.


2019 ◽  
Vol 19 (04) ◽  
pp. 603-628 ◽  
Author(s):  
FRANCESCO CALIMERI ◽  
SIMONA PERRI ◽  
JESSICA ZANGARI

AbstractAnswer Set Programming (ASP) is a purely declarative formalism developed in the field of logic programming and non-monotonic reasoning: computational problems are encoded by logic programs whose answer sets, corresponding to solutions, are computed by an ASP system. Different, semantically equivalent, programs can be defined for the same problem; however, performance of systems evaluating them might significantly vary. We propose an approach for automatically transforming an input logic program into an equivalent one that can be evaluated more efficiently. One can make use of existing tree-decomposition techniques for rewriting selected rules into a set of multiple ones; the idea is to guide and adaptively apply them on the basis of proper new heuristics, to obtain a smart rewriting algorithm to be integrated into an ASP system. The method is rather general: it can be adapted to any system and implement different preference policies. Furthermore, we define a set of new heuristics tailored at optimizing grounding, one of the main phases of the ASP computation; we use them in order to implement the approach into the ASP systemDLV, in particular into its grounding subsystemℐ-DLV, and carry out an extensive experimental activity for assessing the impact of the proposal.


2019 ◽  
Vol 19 (5-6) ◽  
pp. 891-907
Author(s):  
MARIO ALVIANO ◽  
CARMINE DODARO ◽  
JOHANNES K. FICHTE ◽  
MARKUS HECHER ◽  
TOBIAS PHILIPP ◽  
...  

AbstractAnswer Set Programming (ASP) solvers are highly-tuned and complex procedures that implicitly solve the consistency problem, i.e., deciding whether a logic program admits an answer set. Verifying whether a claimed answer set is formally a correct answer set of the program can be decided in polynomial time for (normal) programs. However, it is far from immediate to verify whether a program that is claimed to be inconsistent, indeed does not admit any answer sets. In this paper, we address this problem and develop the new proof format ASP-DRUPE for propositional, disjunctive logic programs, including weight and choice rules. ASP-DRUPE is based on the Reverse Unit Propagation (RUP) format designed for Boolean satisfiability. We establish correctness of ASP-DRUPE and discuss how to integrate it into modern ASP solvers. Later, we provide an implementation of ASP-DRUPE into the wasp solver for normal logic programs.


2011 ◽  
Vol 11 (2-3) ◽  
pp. 171-202 ◽  
Author(s):  
MICHAEL FINK

AbstractDifferent notions of equivalence, such as the prominent notions of strong and uniform equivalence, have been studied in Answer-Set Programming, mainly for the purpose of identifying programs that can serve as substitutes without altering the semantics, for instance in program optimization. Such semantic comparisons are usually characterized by various selections of models in the logic of Here-and-There (HT). For uniform equivalence however, correct characterizations in terms of HT-models can only be obtained for finite theories, respectively programs. In this paper, we show that a selection of countermodels in HT captures uniform equivalence also for infinite theories. This result is turned into coherent characterizations of the different notions of equivalence by countermodels, as well as by a mixture of HT-models and countermodels (so-called equivalence interpretations). Moreover, we generalize the so-called notion of relativized hyperequivalence for programs to propositional theories, and apply the same methodology in order to obtain a semantic characterization which is amenable to infinite settings. This allows for a lifting of the results to first-order theories under a very general semantics given in terms of a quantified version of HT. We thus obtain a general framework for the study of various notions of equivalence for theories under answer-set semantics. Moreover, we prove an expedient property that allows for a simplified treatment of extended signatures, and provide further results for non-ground logic programs. In particular, uniform equivalence coincides under open and ordinary answer-set semantics, and for finite non-ground programs under these semantics, also the usual characterization of uniform equivalence in terms of maximal and total HT-models of the grounding is correct, even for infinite domains, when corresponding ground programs are infinite.


AI Magazine ◽  
2016 ◽  
Vol 37 (3) ◽  
pp. 7-12 ◽  
Author(s):  
Vladimir Lifschitz

Answer set programming is a declarative programming paradigm based on the answer set semantics of logic programs. This introductory article provides the mathematical background for the discussion of answer set programming in other contributions to this special issue.


2012 ◽  
Vol 12 (4-5) ◽  
pp. 719-735 ◽  
Author(s):  
JOSEPH BABB ◽  
JOOHYUNG LEE

AbstractThe module theorem by Janhunen et al. demonstrates how to provide a modular structure in answer set programming, where each module has a well-defined input/output interface which can be used to establish the compositionality of answer sets. The theorem is useful in the analysis of answer set programs, and is a basis of incremental grounding and reactive answer set programming. We extend the module theorem to the general theory of stable models by Ferraris et al. The generalization applies to non-ground logic programs allowing useful constructs in answer set programming, such as choice rules, the count aggregate, and nested expressions. Our extension is based on relating the module theorem to the symmetric splitting theorem by Ferraris et al. Based on this result, we reformulate and extend the theory of incremental answer set computation to a more general class of programs.


Author(s):  
FELICIDAD AGUADO ◽  
PEDRO CABALAR ◽  
MARTÍN DIÉGUEZ ◽  
GILBERTO PÉREZ ◽  
TORSTEN SCHAUB ◽  
...  

Abstract In this survey, we present an overview on (Modal) Temporal Logic Programming in view of its application to Knowledge Representation and Declarative Problem Solving. The syntax of this extension of logic programs is the result of combining usual rules with temporal modal operators, as in Linear-time Temporal Logic (LTL). In the paper, we focus on the main recent results of the non-monotonic formalism called Temporal Equilibrium Logic (TEL) that is defined for the full syntax of LTL but involves a model selection criterion based on Equilibrium Logic, a well known logical characterization of Answer Set Programming (ASP). As a result, we obtain a proper extension of the stable models semantics for the general case of temporal formulas in the syntax of LTL. We recall the basic definitions for TEL and its monotonic basis, the temporal logic of Here-and-There (THT), and study the differences between finite and infinite trace length. We also provide further useful results, such as the translation into other formalisms like Quantified Equilibrium Logic and Second-order LTL, and some techniques for computing temporal stable models based on automata constructions. In the remainder of the paper, we focus on practical aspects, defining a syntactic fragment called (modal) temporal logic programs closer to ASP, and explaining how this has been exploited in the construction of the solver telingo, a temporal extension of the well-known ASP solver clingo that uses its incremental solving capabilities.


Sign in / Sign up

Export Citation Format

Share Document