scholarly journals Possibilistic ASP Base Revision by Certain Input

Author(s):  
Laurent Garcia ◽  
Claire Lefèvre ◽  
Odile Papini ◽  
Igor Stéphan ◽  
Eric Würbel

Belief base revision has been studied within the answer set programming framework. We go a step further by introducing uncertainty and studying belief base revision when beliefs are represented by possibilistic logic programs under possibilistic answer set semantics and revised by certain input. The paper proposes two approaches of rule-based revision operators and presents their semantic characterization in terms of possibilistic distribution. This semantic characterization allows for equivalently considering the evolution of syntactic logic programs and the evolution of their semantic content. It then studies the logical properties of the proposed operators and gives complexity results.

2019 ◽  
Vol 66 ◽  
pp. 989-1029
Author(s):  
Laurent Garcia ◽  
Claire Lefèvre ◽  
Igor Stéphan ◽  
Odile Papini ◽  
Éric Würbel

The paper deals with base revision for Answer Set Programming (ASP). Base revision in classical logic is done by the removal of formulas. Exploiting the non-monotonicity of ASP allows one to propose other revision strategies, namely addition strategy or removal and/or addition strategy. These strategies allow one to define families of rule-based revision operators. The paper presents a semantic characterization of these families of revision operators in terms of answer sets. This semantic characterization allows for equivalently considering the evolution of syntactic logic programs and the evolution of their semantic content. It then studies the logical properties of the proposed operators and gives complexity results.  


2011 ◽  
Vol 11 (2-3) ◽  
pp. 171-202 ◽  
Author(s):  
MICHAEL FINK

AbstractDifferent notions of equivalence, such as the prominent notions of strong and uniform equivalence, have been studied in Answer-Set Programming, mainly for the purpose of identifying programs that can serve as substitutes without altering the semantics, for instance in program optimization. Such semantic comparisons are usually characterized by various selections of models in the logic of Here-and-There (HT). For uniform equivalence however, correct characterizations in terms of HT-models can only be obtained for finite theories, respectively programs. In this paper, we show that a selection of countermodels in HT captures uniform equivalence also for infinite theories. This result is turned into coherent characterizations of the different notions of equivalence by countermodels, as well as by a mixture of HT-models and countermodels (so-called equivalence interpretations). Moreover, we generalize the so-called notion of relativized hyperequivalence for programs to propositional theories, and apply the same methodology in order to obtain a semantic characterization which is amenable to infinite settings. This allows for a lifting of the results to first-order theories under a very general semantics given in terms of a quantified version of HT. We thus obtain a general framework for the study of various notions of equivalence for theories under answer-set semantics. Moreover, we prove an expedient property that allows for a simplified treatment of extended signatures, and provide further results for non-ground logic programs. In particular, uniform equivalence coincides under open and ordinary answer-set semantics, and for finite non-ground programs under these semantics, also the usual characterization of uniform equivalence in terms of maximal and total HT-models of the grounding is correct, even for infinite domains, when corresponding ground programs are infinite.


2004 ◽  
Vol 4 (3) ◽  
pp. 325-354 ◽  
Author(s):  
MAURICIO OSORIO ◽  
JUAN A. NAVARRO ◽  
JOSÉ ARRAZOLA

We present some applications of intermediate logics in the field of Answer Set Programming (ASP). A brief, but comprehensive introduction to the answer set semantics, intuitionistic and other intermediate logics is given. Some equivalence notions and their applications are discussed. Some results on intermediate logics are shown, and applied later to prove properties of answer sets. A characterization of answer sets for logic programs with nested expressions is provided in terms of intuitionistic provability, generalizing a recent result given by Pearce. It is known that the answer set semantics for logic programs with nested expressions may select non-minimal models. Minimal models can be very important in some applications, therefore we studied them; in particular we obtain a characterization, in terms of intuitionistic logic, of answer sets which are also minimal models. We show that the logic G3 characterizes the notion of strong equivalence between programs under the semantic induced by these models. Finally we discuss possible applications and consequences of our results. They clearly state interesting links between ASP and intermediate logics, which might bring research in these two areas together.


AI Magazine ◽  
2016 ◽  
Vol 37 (3) ◽  
pp. 7-12 ◽  
Author(s):  
Vladimir Lifschitz

Answer set programming is a declarative programming paradigm based on the answer set semantics of logic programs. This introductory article provides the mathematical background for the discussion of answer set programming in other contributions to this special issue.


2019 ◽  
Vol 19 (5-6) ◽  
pp. 957-973
Author(s):  
FRANCESCO CALIMERI ◽  
GIOVAMBATTISTA IANNI ◽  
FRANCESCO PACENZA ◽  
SIMONA PERRI ◽  
JESSICA ZANGARI

AbstractRepeated executions of reasoning tasks for varying inputs are necessary in many applicative settings, such as stream reasoning. In this context, we propose an incremental grounding approach for the answer set semantics. We focus on the possibility of generating incrementally larger ground logic programs equivalent to a given non-ground one; so calledovergrounded programscan be reused in combination with deliberately many different sets of inputs. Updating overgrounded programs requires a small effort, thus making the instantiation of logic programs considerably faster when grounding is repeated on a series of inputs similar to each other. Notably, the proposed approach works “under the hood”, relieving designers of logic programs from controlling technical aspects of grounding engines and answer set systems. In this work we present the theoretical basis of the proposed incremental grounding technique, we illustrate the consequent repeated evaluation strategy and report about our experiments.


2010 ◽  
Vol 10 (4-6) ◽  
pp. 531-545 ◽  
Author(s):  
YISONG WANG ◽  
JIA-HUAI YOU ◽  
LI YAN YUAN ◽  
YI-DONG SHEN

AbstractDescription Logic Programs (dl-programs) proposed by Eiter et al. constitute an elegant yet powerful formalism for the integration of answer set programming with description logics, for the Semantic Web. In this paper, we generalize the notions of completion and loop formulas of logic programs to description logic programs and show that the answer sets of a dl-program can be precisely captured by the models of its completion and loop formulas. Furthermore, we propose a new, alternative semantics for dl-programs, called the canonical answer set semantics, which is defined by the models of completion that satisfy what are called canonical loop formulas. A desirable property of canonical answer sets is that they are free of circular justifications. Some properties of canonical answer sets are also explored.


2009 ◽  
Vol 9 (1) ◽  
pp. 1-56 ◽  
Author(s):  
ENRICO PONTELLI ◽  
TRAN CAO SON ◽  
OMAR ELKHATIB

AbstractThe paper introduces the notion of offline justification for answer set programming (ASP). Justifications provide a graph-based explanation of the truth value of an atom with respect to a given answer set. The paper extends also this notion to provide justification of atoms during the computation of an answer set (on-line justification) and presents an integration of online justifications within the computation model of Smodels. Offline and online justifications provide useful tools to enhance understanding of ASP, and they offer a basic data structure to support methodologies and tools for debugging answer set programs. A preliminary implementation has been developed in – .


2020 ◽  
Vol 34 (03) ◽  
pp. 3017-3024
Author(s):  
Hai Wan ◽  
Guohui Xiao ◽  
Chenglin Wang ◽  
Xianqiao Liu ◽  
Junhong Chen ◽  
...  

In this paper, we study the problem of query answering with guarded existential rules (also called GNTGDs) under stable model semantics. Our goal is to use existing answer set programming (ASP) solvers. However, ASP solvers handle only finitely-ground logic programs while the program translated from GNTGDs by Skolemization is not in general. To address this challenge, we introduce two novel notions of (1) guarded instantiation forest to describe the instantiation of GNTGDs and (2) prime block to characterize the repeated infinitely-ground program translated from GNTGDs. Using these notions, we prove that the ground termination problem for GNTGDs is decidable. We also devise an algorithm for query answering with GNTGDs using ASP solvers. We have implemented our approach in a prototype system. The evaluation over a set of benchmarks shows encouraging results.


Sign in / Sign up

Export Citation Format

Share Document