Soil Seed Bank Responses to Postfire Herbicide and Native Seeding Treatments Designed to Control Bromus tectorum in a Pinyon–Juniper Woodland at Zion National Park, USA

2013 ◽  
Vol 6 (1) ◽  
pp. 118-129 ◽  
Author(s):  
Hondo Brisbin ◽  
Andrea Thode ◽  
Matt Brooks ◽  
Karen Weber

AbstractThe continued threat of an invasive, annual brome (Bromus) species in the western United States has created the need for integrated approaches to postfire restoration. Additionally, the high germination rate, high seed production, and seed bank carryover of annual bromes points to the need to assay soil seed banks as part of monitoring programs. We sampled the soil seed bank to help assess the effectiveness of treatments utilizing the herbicide Plateau® (imazapic) and a perennial native seed mix to control annual Bromus species and enhance perennial native plant establishment following a wildfire in Zion National Park, Utah. This study is one of few that have monitored the effects of imazapic and native seeding on a soil seed bank community and the only one that we know of that has done so in a pinyon–juniper woodland. The study made use of untreated, replicated controls, which is not common for seed bank studies. One year posttreatment, Bromus was significantly reduced in plots sprayed with herbicide. By the second year posttreatment, the effects of imazapic were less evident and convergence with the controls was evident. Emergence of seeded species was low for the duration of the study. Dry conditions and possible interactions with imazapic probably contributed to the lack of emergence of seeded native species. The perennial grass sand dropseed outperformed the other species included in the seed mix. We also examined how the treatments affected the soil seed bank community as a whole. We found evidence that the herbicide was reducing several native annual forbs and one nonnative annual forb. However, overall effects on the community were not significant. The results of our study were similar to what others have found in that imazapic is effective in providing a short-term reduction in Bromus density, although it can impact emergence of nontarget species.

2003 ◽  
Vol 51 (3) ◽  
pp. 227 ◽  
Author(s):  
Y. Tang ◽  
S. L. Boulter ◽  
R. L. Kitching

Physical changes and flows of energy at the interface between two contrasting ecosystems affect the distribution of species across the ecotone. The maintenance and stability of the, often abrupt, transition between Australian rainforest and non-rainforests is often attributed to fire. We use pre-germination treatments of smoke and heat on soil seed bank samples to determine plant distributions across the edge between subtropical rainforest and an adjacent eucalypt-dominated wet sclerophyll forest. Soil seed bank collections at 15 m within the eucalypt forest had both significantly higher density and diversity of seedlings than those at 30 m, at the edge itself or at any site within the rainforest. This response was most apparent when a pre-germination smoke treatment was applied. We suggest that smoke is an important germination trigger for species regenerating at this interface. Our results confirm the importance of fire in determining and maintaining the nature of this ecotone.


2011 ◽  
Vol 79 (2) ◽  
pp. 157-166 ◽  
Author(s):  
Maciej Wódkiewicz ◽  
Anna Justyna Kwiatkowska-Falińska

Forest seed banks mostly studied in managed forests proved to be small, species poor and not reflecting aboveground species composition. Yet studies conducted in undisturbed communities indicate a different seed bank characteristic. Therefore we aimed at describing soil seed bank in an undisturbed forest in a remnant of European lowland temperate forests, the Białowieża Forest. We compared similarity between the herb layer and seed bank, similarity of seed bank between different patches, and dominance structure of species in the herb layer and in the seed bank of two related oak-hornbeam communities. We report relatively high values of Sorensen species similarity index between herb layer and seed bank of both patches. This suggests higher species similarity of the herb layer and soil seed bank in natural, unmanaged forests represented by both plots than in fragmented communities influenced by man. Although there was a set of core seed bank species present at both plots, yielding high Sorensen species similarity index values, considerable differences between plots in seed bank size and dominance structure of species were found, indicating spatial variability of studied seed bank generated by edaphic conditions. Dominance structure of species in the herb layer was not reflected in the underlying seed bank. This stresses, that natural forest regeneration cannot rely only on the seed bank, although some forest species are capable of forming soil seed banks. While forest seed banks may not reflect vegetation composition of past successional stages, they may inform on history and land use of a specific plot.


Author(s):  
Ya-Fei Shi ◽  
Zengru Wang ◽  
Bing-Xin Xu ◽  
Jian-Qiang Huo ◽  
Rui Hu ◽  
...  

Soil seed banks may offer great potential for restoring and maintaining desert ecosystems that have been degraded by climate change and anthropogenic disturbance. However, few studies have explored the annual dynamics in the composition and relative abundance of these soil seed banks. We conducted a long-term observational study to assess the effects of environmental factors (meteorology and microtopography) and aboveground vegetation on the soil seed bank of the Tengger Desert, China. The desert seed bank was dominated by annual herbs. We found that more rainfall in the growing season increased the number of seeds in the soil seed bank, and that quadrats at relatively higher elevations had fewer seeds. The species composition had more similarity in the seed bank than in the aboveground vegetation, though the seed bank and aboveground vegetation did change synchronously due to the rapid propagation of annuals. Together, our findings suggest that the combined effects of environmental factors and plant life forms determine the species composition and size of soil seed banks in deserts. Thus, if degraded desert ecosystems are left to regenerate naturally, the lack of shrub and perennial herb seeds could crucially limit their restoration. Human intervention and management may have to be applied to enhance the seed abundance of longer-lived lifeforms in degraded deserts.


2020 ◽  
Vol 13 (3) ◽  
pp. 256-265 ◽  
Author(s):  
José Djalma de Souza ◽  
Bruno Ayron de Souza Aguiar ◽  
Danielle Melo dos Santos ◽  
Vanessa Kelly Rodrigues de Araujo ◽  
Júlia Arruda Simões ◽  
...  

Abstract Aims In dry tropical forests, herbaceous species may have dormancy mechanisms and form persistent and transient seed banks in the soil. Evolutionarily acquired, these mechanisms are efficient for the establishment and survival of these herbs, especially in forests with unpredictable climates, such as the Caatinga. Thus, our objective was to verify whether the studied herbaceous species adopt the physical dormancy mechanism and how these natural barriers are overcome, to understand the temporal dynamics existing in the soil seed bank from a Brazilian dry tropical forest. Methods Seeds of five native herbaceous species from the Caatinga forests were selected and submitted to pre-germinative treatments for verifying the presence of physical dormancy. We collected soil samples in the rainy and dry seasons for four consecutive years and monitored the emergence of the selected herbaceous in the greenhouse. We verified the differences in germination and seed bank emergence in the soil by generalized linear models. Important Findings The presence and absence of physical dormancy were observed in seeds from Caatinga herbaceous species. We found intraspecific and interspecific differences in the herbaceous emergence from soil seed banks between years and climatic seasons. In perennial herbs, consecutive lack of emergence between seasons and years was frequent, which suggests a direct relationship with the mechanism of physical dormancy and the environmental conditions necessary to overcome integument barriers. In these species, seed dimorphism and dormancy may confer additional advantages to their survival. Moreover, presenting intermediate levels of physical dormancy in an annual species may be an evolutionary adjustment to rainfall unpredictability. In contrast, we found that the annual herb without dormancy is more sensitive to seasonal and interannual climate changes, as evidenced by the increase and significant reduction of its emergence in the soil seed bank. These differences acquired evolutionarily are advantageous for the establishment of herbaceous populations, mainly in semiarid regions with an unpredictable climate.


2019 ◽  
Vol 41 (5) ◽  
pp. 383 ◽  
Author(s):  
Vinod K. Chejara ◽  
Paul Kristiansen ◽  
R. D. B. (Wal) Whalley ◽  
Brian M. Sindel ◽  
Christopher Nadolny

Hyparrhenia hirta (L.) Stapf (also known as Coolatai grass, South African bluestem or thatching grass) has become a serious invasive weed in Australia. Within its native range, it is generally regarded as a useful grass particularly for thatching, and seed production is low with a low soil seed bank of from 2 to 200seedsm–2. Several hundred accessions of H. hirta were deliberately introduced into Australia up until the 1980s and nearly all were discarded because of poor seed production. However, at least one introduction in the 1890s in northern New South Wales (NSW), Australia, has possibly contributed to the present serious weed problem. Annual seed production from roadside stands in northern NSW ranged from 7000 to 92000seedsm–2 in 2015. The soil seed bank under dense H. hirta infestations in the same region in 2006 and 2007, was found to be ~30000seedsm–2 mostly confined to the top 2cm, with few dormant seeds and a large reduction of these numbers over the next 12 months when further seed input was prevented. Similar studies of other perennial grass weeds have found seed banks of similar sizes, but dormancy mechanisms ensure that their seed banks last for at least 10 years without further seed input. These results suggest that the present weedy populations of H. hirta have dramatically increased fecundity enabling a large seed bank to develop beneath dense stands. The development of seed dormancy and consequently a long-lived seed bank would make this weed even more difficult to control. Until seed dormancy develops, control of H. hirta in northern NSW can be effective provided further input into the seed bank can be prevented.


1990 ◽  
Vol 38 (3) ◽  
pp. 261 ◽  
Author(s):  
AW Graham ◽  
MS Hopkins

The size and floristic composition of soil seed banks under four adjacent, unlogged and structurally different rainforest types were assessed by exposing 17 surface soil samples (to 40mm depth) to germination-house conditions. The mean size of the seed bank in the undisturbed forest types was 240 seeds m-2 (s.d. 139). Seeds of secondary species dominated the soil seed banks in all forest types, although weed seeds constituted only 0.6-4.0%. Some forest types had characteristic component secondary species in the buried seed bank. Agglomerative classification and multidimensional scaling analysis of quantitative sample data indicated that the parent structural-environmental forest type was the dominant influence in determining composition of the soil seed banks. Comparisons of the seed banks of the intact rainforest with those of nearby disturbed forests showed the former to be 35 to 50% smaller in total size, and lacking in some distinctive secondary species. It was concluded that disturbance, both within and adjacent to rainforest, may influence soil seed bank compositions, and hence future patterns of regeneration.


2013 ◽  
Vol 31 (2) ◽  
pp. 267-279 ◽  
Author(s):  
E. Soltani ◽  
A. Soltani ◽  
S. Galeshi ◽  
F. Ghaderi-Far ◽  
E. Zeinali

Studies were conducted to estimate parameters and relationships associated with sub-processes in soil seed banks of oilseed rape in Gorgan, Iran. After one month of burial, seed viability decreased to 39%, with a slope of 2.03% per day, and subsequently decreased with a lower slope of 0.01 until 365 days following burial in the soil. Germinability remained at its highest value in autumn and winter and decreased from spring to the last month of summer. Non-dormant seeds of volunteer oilseed rape did not germinate at temperatures lower than 3.8 ºC and a water potential of -1.4 MPa ºd. The hydrothermal values were 36.2 and 42.9 MPa ºd for sub- and supra-optimal temperatures, respectively. Quantification of seed emergence as influenced by burial depth was performed satisfactorily (R² = 0.98 and RMSE = 5.03). The parameters and relationships estimated here can be used for modelling soil seed bank dynamics or establishing a new model for the environment.


2012 ◽  
Vol 5 (4) ◽  
pp. 443-453 ◽  
Author(s):  
Scott R. Abella ◽  
Lindsay P. Chiquoine ◽  
Dana M. Backer

AbstractUnderstanding the ecological characteristics of areas invaded and not invaded by exotic plants is a priority for invasive plant science and management. Buffelgrass is an invasive perennial species that managers view as a major threat to indigenous ecosystems of conservation lands in Australia, Mexico, the United States, and other locations where the species is not native. At 14 sites in Saguaro National Park in the Arizona Uplands of the Sonoran Desert, we compared the soil, vegetation, and soil seed bank of patches invaded and not invaded by buffelgrass. Abiotic variables, such as slope aspect and soil texture, did not differ between buffelgrass patches and patches without buffelgrass. In contrast, variables under primarily biotic control differed between patch types. Soil nutrients, such as organic C and NO3–N, were approximately twofold greater in buffelgrass compared with nonbuffelgrass patches. Average native species richness was identical (14 species 100 m−2) between patch types, but native plant cover was 43% lower in buffelgrass patches. Unexpectedly, native seed-bank densities did not differ significantly between patch types and were 40% greater than buffelgrass seed density below buffelgrass canopies. Results suggest that (1) soil nutrient status should not be unfavorable for native plant colonization at buffelgrass sites if buffelgrass is treated; (2) at least in the early stages of buffelgrass patch formation (studied patches were about 10 yr old), native vegetation species were not excluded, but rather, their cover was reduced; and (3) native soil seed banks were not reduced in buffelgrass patches.


Sign in / Sign up

Export Citation Format

Share Document