Weed Management in Glyphosate-Resistant Corn with Glyphosate and Halosulfuron

2004 ◽  
Vol 18 (4) ◽  
pp. 1049-1057 ◽  
Author(s):  
Walter E. Thomas ◽  
Ian C. Burke ◽  
John W. Wilcut

Three field studies were conducted at Lewiston Woodville, NC, in 2001 and 2002 to evaluate crop tolerance, weed control, grain yield, and net returns in glyphosate-resistant corn with various herbicide systems. Crop injury, weed control, and grain yield were not influenced by glyphosate formulation. Atrazine preemergence (PRE) and atrazine plus metolachlor PRE, averaged over postemergence (POST) systems, controlled Texas panicum at least 80 and 87%, respectively. Sequential glyphosate applications (early postemergence [EPOST] followed by [fb] POST) provided at least 99% control of Texas panicum compared with at least 86 and 88% control with glyphosate EPOST and glyphosate plus halosulfuron EPOST, respectively. Atrazine plus metolachlor PRE fb any glyphosate system controlled large crabgrass and goosegrass 89 to 100% and 94 to 100%, respectively. Sequential glyphosate treatments controlled large crabgrass and goosegrass at least 99 and 95%, respectively. Regardless of PRE system, glyphosate plus halosulfuron EPOST and sequential applications of glyphosate controlled common ragweed and common lambsquarters at least 99%, whereas glyphosate EPOST alone provided at least 88 and 96% control, respectively. Glyphosate plus halosulfuron EPOST and glyphosate sequentially controlled yellow nutsedge similarly and more consistently than glyphosate EPOST. Regardless of PRE treatment, sequential glyphosate applications provided at least 98% control of entireleaf and pitted morningglory, whereas glyphosate EPOST controlled at least 64 and 62%, respectively. Glyphosate EPOST and the sequential glyphosate EPOST fb POST systems yielded similarly at all three locations. Net returns were highest at all three locations with the glyphosate sequential system, with similar net returns obtained with glyphosate EPOST and glyphosate plus halosulfuron EPOST at two and one locations, respectively.

2004 ◽  
Vol 18 (3) ◽  
pp. 826-834 ◽  
Author(s):  
Walter E. Thomas ◽  
Ian C. Burke ◽  
John W. Wilcut

Four field studies were conducted at the Peanut Belt Research Station near Lewiston Woodville, NC, in 2000, 2001, and 2002 to evaluate crop tolerance, weed control, grain yield, and net returns in glyphosate-resistant corn with various herbicide systems. Preemergence (PRE) treatment options included no herbicide, atrazine at 1.12 kg ai/ha, or atrazine plus metolachlor at 1.68 kg ai/ha. Postemergence (POST) treatment options included glyphosate at 1.12 kg ai/ha as either the isopropylamine salt or the diammonium salt, either alone or in mixtures with mesotrione at 105 g ai/ha plus crop oil concentrate at 1% (v/v) or halosulfuron at 53 g ai/ha plus 0.25% (v/v) nonionic surfactant. All response variables were independent of glyphosate formulation. Addition of metolachlor to atrazine PRE improved large crabgrass and goosegrass control but did not always improve Texas panicum control. POST control of these annual grasses was similar with glyphosate alone or in mixture with halosulfuron or mesotrione. Glyphosate POST controlled common lambsquarters and common ragweed 89 and 93%, respectively. Glyphosate plus halosulfuron POST provided more effective yellow nutsedge control than glyphosate POST. Atrazine PRE or atrazine plus metolachlor PRE followed by any glyphosate POST treatment controlledIpomoeaspp. at least 93%. Glyphosate plus mesotrione in total POST systems always provided greater control ofIpomoeaspp. than glyphosate alone. The highest yielding treatments always included glyphosate POST, either with or without a PRE herbicide treatment. Similarly, systems that included any glyphosate POST treatment had the highest net returns.


2008 ◽  
Vol 22 (4) ◽  
pp. 571-579 ◽  
Author(s):  
Ian C. Burke ◽  
Walter E. Thomas ◽  
Jayla R. Allen ◽  
Jim Collins ◽  
John W. Wilcut

Experiments were conducted at three North Carolina research stations in 2003 to evaluate weed control and corn yield in glyphosate-resistant, glufosinate-resistant, imidazolinone-tolerant, and conventional corn weed management systems. Late-season control of common lambsquarters, large crabgrass, and yellow nutsedge increased with metolachlor PRE compared with no PRE herbicide treatment. Common lambsquarters, pitted morningglory, entireleaf morningglory, spurred anoda, and tropic croton control was improved by a single early POST (EPOST) application regardless of herbicide system. Control of common lambsquarters, pitted morningglory, entireleaf morningglory, and spurred anoda was similar for glyphosate and glufosinate systems for each POST over-the-top (POT) herbicide system. A single EPOST application of imazethapyr plus imazapyr to imidazolinone-tolerant corn controlled common lambsquarters, pitted morningglory, entireleaf morningglory, and spurred anoda and was better than a single EPOST application of glyphosate, glufosinate, or nicosulfuron. Tropic croton was controlled ≥ 95% with glufosinate or glyphosate, applied once or twice, or in mixture with metolachlor. A single EPOST application of imazethapyr plus imazapyr or nicosulfuron did not control tropic croton. Common lambsquarters, entireleaf morningglory, large crabgrass, Palmer amaranth, and yellow nutsedge control was greater with a late-POST–directed (LAYBY) of ametryn than no LAYBY. Systems that did not include a POT herbicide system had the lowest percentage in the weed-free yield and the lowest yield. Treatments that included a POT system with or without a PRE treatment of metolachlor yielded within 5% of the weed-free treatment, regardless of herbicide system.


Weed Science ◽  
1998 ◽  
Vol 46 (6) ◽  
pp. 698-702 ◽  
Author(s):  
W. Carroll Johnson ◽  
Benjamin G. Mullinix

Field studies were conducted from 1995 to 1997 near Tifton, GA, to determine the benefits of stale seedbed weed control in cucumber. Three stale seedbed management systems—(1) power till stale seedbeds twice (2 ×), (2) glyphosate application immediately after planting, and (3) combination system of stale seedbeds power tilled once 2 wk prior to planting followed by glyphosate application immediately after planting cucumber—were evaluated as main plots. Subplots were weed management systems after planting cucumber: intensive, basic, and cultivation alone. Weed densities were generally greater in 1996 and 1997 than in 1995. Yellow nutsedge was the overall predominant species in 1995 (46 plants m−2), with Florida pusley being the predominant species in 1996 and 1997, at 80 and 124 plants m−2, respectively. Generally, stale seedbeds shallow tilled 2 × had fewer weeds and greater cucumber yields than stale seedbeds treated with glyphosate. Glyphosate did not adequately control emerged Florida pusley on stale seedbeds, resulting in reduced cucumber yield. Clomazone preemergence and bentazon/halosulfuron postemergence were used for broadleaf weed control in the intensive weed management system. These herbicides injured cucumber plants, delayed maturity, and reduced yield. Based on our results, stale seedbeds shallow tilled 2 × can be integrated into cucumber production and provide effective cultural weed control. Furthermore, these systems will replace the need for potentially injurious herbicides.


Weed Science ◽  
2003 ◽  
Vol 51 (6) ◽  
pp. 1002-1009 ◽  
Author(s):  
Dunk Porterfield ◽  
John W. Wilcut ◽  
Jerry W. Wells ◽  
Scott B. Clewis

Field studies conducted at three locations in North Carolina in 1998 and 1999 evaluated crop tolerance, weed control, and yield with CGA-362622 alone and in combination with various weed management systems in transgenic and nontransgenic cotton systems. The herbicide systems used bromoxynil, CGA-362622, glyphosate, and pyrithiobac applied alone early postemergence (EPOST) or mixtures of CGA-362622 plus bromoxynil, glyphosate, or pyrithiobac applied EPOST. Trifluralin preplant incorporated followed by (fb) fluometuron preemergence (PRE) alone or fb a late POST–directed (LAYBY) treatment of prometryn plus MSMA controlled all the weed species present less than 90%. Herbicide systems that included soil-applied and LAYBY herbicides plus glyphosate EPOST or mixtures of CGA-362622 EPOST plus bromoxynil, glyphosate, or pyrithiobac controlled broadleaf signalgrass, entireleaf morningglory, large crabgrass, Palmer amaranth, prickly sida, sicklepod, and smooth pigweed at least 90%. Only cotton treated with these herbicide systems yielded equivalent to the weed-free check for each cultivar. Bromoxynil systems did not control Palmer amaranth and sicklepod, pyrithiobac systems did not control sicklepod, and CGA-362622 systems did not control prickly sida.


2004 ◽  
Vol 18 (4) ◽  
pp. 1018-1022 ◽  
Author(s):  
Joyce Tredaway Ducar ◽  
John W. Wilcut ◽  
John S. Richburg

Field studies were conducted in 1992 and 1993 to evaluate imazapic alone and in postemergence (POST) mixtures with atrazine or bentazon for weed control in imidazolinone-resistant corn treated with carbofuran. Nicosulfuron and nicosulfuron plus atrazine also were evaluated. Imazapic at 36 and 72 g ai/ha controlled large crabgrass 85 and 92%, respectively, which was equivalent to control obtained with nicosulfuron plus atrazine. Imazapic at the higher rate controlled large crabgrass better than nicosulfuron alone. Imazapic at 36 and 72 g/ha controlled Texas panicum 88 and 99%, respectively, and at the higher rate control was equivalent to that obtained with nicosulfuron alone or in mixture with atrazine. Imazapic plus bentazon POST controlled Texas panicum less than imazapic at the lower rate applied alone. Redroot pigweed was controlled 100% with all herbicide treatments. Imazapic at either rate alone or in tank mixture with bentazon or atrazine controlled prickly sida >99%, which was superior to control obtained with nicosulfuron or nicosulfuron plus atrazine. Smallflower, entireleaf, ivyleaf, pitted, and tall morningglories were controlled 96% or greater with all herbicide treatments except nicosulfuron alone. Sicklepod control was >88% with all imazapic treatments, whereas control from nicosulfuron alone was 72%. Corn yields were improved by the addition of POST herbicides with no differences among POST herbicide treatments.


2009 ◽  
Vol 23 (1) ◽  
pp. 6-10 ◽  
Author(s):  
David L. Jordan ◽  
Sarah H. Lancaster ◽  
James E. Lanier ◽  
Bridget R. Lassiter ◽  
P. Dewayne Johnson

Research was conducted in North Carolina to compare weed control by various rates of imazapic POST alone or following diclosulam PRE. In a second experiment, weed control by imazapic applied POST alone or with acifluoren, diclosulam, or 2,4-DB was compared. In a final experiment, yellow nutsedge control by imazapic alone and with the fungicides azoxystrobin, chlorothalonil, pyraclostrobin, and tebuconazole was compared. Large crabgrass was controlled more effectively by imazapic POST than diclosulam PRE. Common lambsquarters, common ragweed, and eclipta were controlled more effectively by diclosulam PRE than imazapic POST. Nodding spurge was controlled similarly by both herbicides. Few differences in control were noted when comparing imazapic rates after diclosulam PRE. Applying either diclosulam PRE or imazapic POST alone or in combination increased peanut yield over nontreated peanut in five of six experiments. Few differences in pod yield were noted when comparing imazapic rates. Acifluorfen, diclosulam, and 2,4-DB did not affect entireleaf morningglory, large crabgrass, nodding spurge, pitted morningglory, and yellow nutsedge control by imazapic. Eclipta control by coapplication of imazapic and diclosulam exceeded control by imazapic alone. The fungicides azoxystrobin, chlorothalonil, pyraclostrobin, and tebuconazole did not affect yellow nutsedge control by imazapic.


2021 ◽  
pp. 1-34
Author(s):  
Sharif Ahmed ◽  
Virender Kumar ◽  
Murshedul Alam ◽  
Mahbubur Rahman Dewan ◽  
Khairul Alam Bhuiyan ◽  
...  

Abstract In Bangladesh, weeds in transplanted rice are largely controlled by labor-intensive and costly manual weeding, resulting in inadequate and untimely weed control. Labor scarcity coupled with intensive rice production has triggered increased use of herbicides. These factors warrant a cost-effective and strategic integrated weed management (IWM) approaches. On-farm trials with transplanted rice were conducted during monsoon (‘Aman’) season in 2016 and 2017 and winter (‘Boro’) season in 2016 to 2017 in agroecological zones 11 and 12 with ten treatments - seven herbicide-based IWM options, one mechanical weed control-based option, and two checks – farmers’ current weed control practice and weed-free, to assess effects on weed control, grain yield, labor use, and profitability. Compared to farmers’ practice, herbicide-based IWM options with mefenacet+bensulfuron-methyl as preemergence (PRE) followed by (fb) either bispyribac-sodium or penoxsulam as postemergence (POST) fb one hand-weeding (HW) were most profitable alternatives, with reductions in labor requirement by 11 to 25 persons-day ha−1 and total weed control cost by USD 44 to 94 ha−1, resulting in net returns increases by USD 54 to 77 ha−1 without compromising on grain yield. In contrast, IWM options with bispyrbac-sodium or penoxsulam as POST application fb one HW reduced yields by 12 to 13% and profits by USD 71 to 190 ha−1. Non-chemical option with mechanical weeding fb one HW performed similarly to farmers’ practice on yield and profitability. We suggest additional research to develop feasible herbicide-free approaches to weed management in transplanted rice that can offer competitive advantages to current practices.


Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 601-607 ◽  
Author(s):  
John W. Wilcut ◽  
John S. Richburg ◽  
E. Ford Eastin ◽  
Gerald R. Wiley ◽  
F. Robert Walls ◽  
...  

Field studies conducted at six locations in Georgia and one location in Virginia evaluated imazethapyr and imazethapyr mixtures for weed control, crop tolerance, and peanut yield. Imazethapyr applied early postemergence controlled bristly starbur, coffee senna, common cocklebur,Ipomoeaspecies, jimsonweed, prickly sida, and smallflower morningglory at least 91% and controlled yellow and purple nutsedge 88 and 98%, respectively. Paraquat plus bentazon applied early postemergence did not control the aforementioned weeds as well as imazethapyr or imazethapyr mixtures. Paraquat applied with imazethapyr reduced bristly starbur control 15% compared to imazethapyr alone but did not influence control of the other species. Imazethapyr control of bristly starbur was not improved by the addition of bentazon. Sicklepod control was less than 24% with imazethapyr and was at least 58% with imazethapyr plus paraquat Imazethapyr plus paraquat controlled sicklepod better than paraquat plus bentazon at three of the four locations evaluated. Imazethapyr did not control Florida beggarweed, while imazethapyr plus paraquat controlled at least 53%. Peanut injury was minimal 30 d after application for all treatments.


2007 ◽  
Vol 21 (1) ◽  
pp. 191-198 ◽  
Author(s):  
Walter E. Thomas ◽  
Wesley J. Everman ◽  
Jayla Allen ◽  
Jim Collins ◽  
John W. Wilcut

Four field studies were conducted in 2004 to evaluate corn tolerance, weed control, grain yield, and net returns in glufosinate-resistant (GUR), glyphosate-resistant (GYR), imidazolinone-tolerant (IT), and nontransgenic (NT) corn with various herbicide systems. No significant differences between hybrid systems were observed for weed control. Limited corn injury (< 5%) was observed for all herbicide treatments. A single early POST (EPOST) system withoutS-metolachlor and sequential POST over the top (POT) herbicide systems, averaged over corn hybrids and PRE and late POST-directed (LAYBY) herbicide options, provide 93 and 99% control of goosegrass, respectively, and at least 83 and 97% control of Texas panicum, respectively. A single EPOST system withoutS-metolachlor, averaged over corn hybrids and LAYBY treatment options, provided at least 88% control of large crabgrass. When averaged over corn hybrid and PRE herbicide options, a sequential POT herbicide system alone provided at least 98, 99, 98, and 100 control of large crabgrass, morningglory species, Palmer amaranth, and common lambsquarters, respectively. The addition of ametryn at LAYBY to a single EPOST system withoutS-metolachlor was beneficial for improving control of morningglory species, common lambsquarters, and Palmer amaranth, depending on location. However, the observed increases (7 percentage points or less) are likely of limited biological significance. Grain yield was variable between hybrids and locations because of environmental differences. Consequently, net returns for each hybrid system within a location were also variable. Any POT system with or without ametryn at LAYBY, averaged over corn hybrid and PRE herbicide options, provided at least 101, 97, 92, and 92% yield protection at Clayton, Kinston, Lewiston, and Rocky Mount, NC, respectively. Net returns were maximized with treatments that provided excellent weed control with minimal inputs.


Weed Science ◽  
1995 ◽  
Vol 43 (2) ◽  
pp. 293-297 ◽  
Author(s):  
W. Carroll Johnson ◽  
Benjamin G. Mullinix

Field studies were conducted from 1991 through 1993 to determine the effects of stale seedbed management practices on weed control in peanut. Main plots were four levels of stale seedbed management: deep till (23 cm) and plant the same day (standard system), deep till 6 wk early and shallow till (7.6 cm) at 2 wk intervals prior to planting, deep till 6 wk early and application of glyphosate (1.1 kg ai ha−1) 1 wk prior to planting, and deep till 6 wk early without additional treatment prior to planting. Sub-plots were three levels of weed management following peanut planting; intensive, basic, and cultivation alone. Stale seedbed management practices stimulated weed emergence when followed by other control measures prior to planting. Populations of Florida beggarweed, Texas panicum, and yellow nutsedge were lower when stale seedbeds were shallow tilled at 2 wk intervals prior to planting, resulting in greater peanut yields. Weeds on nontreated stale seedbeds were difficult to control once peanut was planted and reduced yields. Stale seedbed management practices generally had no effect on the quantity of foreign material contaminants originating from weeds, soil, or peanut plant in harvested peanut. These results indicate that shallow tillage on stale seedbeds can reduce weed populations prior to planting and increase peanut yields.


Sign in / Sign up

Export Citation Format

Share Document