Trinexapac-Ethyl Influences Bispyribac-Sodium Absorption and Efficacy for Annual Bluegrass (Poa annua) Control in Creeping Bentgrass (Agrostis stolonifera)

2010 ◽  
Vol 24 (3) ◽  
pp. 326-331 ◽  
Author(s):  
Patrick E. McCullough ◽  
Stephen E. Hart

Bispyribac-sodium selectively controls annual bluegrass in cool-season turf but efficacy may be influenced by management practices, such as plant growth regulator use. Experiments were conducted in New Jersey to investigate efficacy and absorption of bispyribac-sodium applied with trinexapac-ethyl for annual bluegrass control and turfgrass tolerance. In laboratory experiments with annual bluegrass, creeping bentgrass, and perennial ryegrass, tank-mixing trinexapac-ethyl with14C-bispyribac-sodium increased presumed foliar absorption of14C-bispyribac-sodium compared with nontrinexapac-ethyl treated; absorption increased with trinexapac-ethyl rate. Differences in14C-bispyribac-sodium absorption were not detected among emulsifiable concentration, microencapsulated concentration, and wettable powder trinexapac-ethyl formulations. In field experiments, sequential bispyribac-sodium applications controlled annual bluegrass 93%, but trinexapac-ethyl did not affect efficacy. Tank-mixing all trinexapac-ethyl formulations with bispyribac-sodium provided similar annual bluegrass control and creeping bentgrass quality compared with bispyribac-sodium alone. Applications of bispyribac-sodium reduced dollar spot cover in both years, whereas trinexapac-ethyl reduced dollar spot cover only in 2005.

2009 ◽  
Vol 23 (4) ◽  
pp. 519-523 ◽  
Author(s):  
Patrick E. McCullough ◽  
Stephen E. Hart

Spray adjuvants may enhance bispyribac–sodium efficacy for annual bluegrass control but chelated iron may be needed to reduce potential turf discoloration. Field and laboratory experiments were conducted to investigate the influence of iron and adjuvants on bispyribac–sodium efficacy for annual bluegrass control in cool-season turf. In laboratory experiments,14C–bispyribac–sodium foliar absorption increased in four grasses by approximately 50 and 100% when applied with a nonionic surfactant and methylated seed oil, respectively, compared to the herbicide alone. Chelated iron did not reduce14C–bispyribac–sodium absorption. In field experiments, spray adjuvants enhanced annual bluegrass control from bispyribac–sodium at 37 g ai/ha but not at 74 g ai/ha. Iron did not reduce annual bluegrass control from bispyribac–sodium, with or without adjuvants, but mitigated creeping bentgrass discoloration for all treatments.


2011 ◽  
Vol 25 (3) ◽  
pp. 385-390
Author(s):  
Patrick E. McCullough ◽  
Stephen E. Hart ◽  
Thomas Gianfagna ◽  
Fabio Chaves

Field and laboratory experiments were conducted in New Jersey to investigate the influence of nitrogen on annual bluegrass and creeping bentgrass metabolism and responses to bispyribac-sodium. In field experiments, withholding nitrogen during the test period increased sensitivity of both grasses to bispyribac-sodium, and grasses fertilized biweekly had darker color on most rating dates. Nitrogen generally increased annual bluegrass tolerance to bispyribac-sodium at 74 g ha−1but not at 148 g ha−1. Creeping bentgrass was influenced by nitrogen at both herbicide rates. In laboratory experiments, weekly nitrogen treatments increased14C-bispyribac-sodium metabolism in both grasses compared to unfertilized plants. Annual bluegrass metabolized approximately 50% less herbicide regardless of nitrogen regime compared to creeping bentgrass. Overall, routine nitrogen fertilization appears to improve annual bluegrass and creeping bentgrass tolerance to bispyribac-sodium, which may be attributed to higher metabolism.


2016 ◽  
Vol 30 (3) ◽  
pp. 733-742 ◽  
Author(s):  
Joseph C. Wolfe ◽  
Joseph C. Neal ◽  
Christopher D. Harlow ◽  
Travis W. Gannon

Recent trends favoring organic and sustainable turfgrass management practices have led to an increased desire for biologically based alternatives to traditional synthetic herbicides. Thaxtomin A, produced by the bacteriumStreptomyces scabies, has been reported to have PRE efficacy on broadleaf weeds, but efficacy of thaxtomin A on annual grassy weeds and safety to newly seeded cool-season turfgrasses have not been reported. Field experiments were conducted to evaluate PRE efficacy of thaxtomin A on smooth crabgrass and annual bluegrass. Monthly applications of thaxtomin A from April to July controlled smooth crabgrass through July but did not provide season-long control equivalent to an industry standard PRE herbicide. An initial application of thaxtomin A at 380 g ai ha−1followed by two applications at 190 or 380 g ha−1at 4-wk intervals provided season-long annual bluegrass control similar to an industry standard PRE herbicide. At 380 g ha−1, thaxtomin A reduced tall fescue and perennial ryegrass cover when applied 1 wk before seeding, at seeding, or 1 wk after seeding but was safe at other application timings. Up to three applications of thaxtomin A at 380 g ha−1at 4-wk intervals did not reduce perennial ryegrass cover. Applications to creeping bentgrass resulted in unacceptable turfgrass injury. These results suggest that thaxtomin A can suppress annual grassy weeds in tall fescue or perennial ryegrass turf when applied at least 2 wk before or after seeding. Furthermore, repeated applications of thaxtomin A can provide effective PRE control of annual bluegrass during overseeded perennial ryegrass establishment.


Weed Science ◽  
2013 ◽  
Vol 61 (2) ◽  
pp. 217-221 ◽  
Author(s):  
Jialin Yu ◽  
Patrick E. McCullough ◽  
William K. Vencill

Amicarbazone controls annual bluegrass in cool-season turfgrasses but physiological effects that influence selectivity have received limited investigation. The objective of this research was to evaluate uptake, translocation, and metabolism of amicarbazone in these species. Annual bluegrass, creeping bentgrass, and tall fescue required < 3, 56, and 35 h to reach 50% foliar absorption, respectively. At 72 h after treatment (HAT), annual bluegrass and creeping bentgrass translocated 73 and 70% of root-absorbed14C to shoots, respectively, while tall fescue only distributed 55%. Annual bluegrass recovered ≈ 50% more root-absorbed14C in shoots than creeping bentgrass and tall fescue. Creeping bentgrass and tall fescue metabolism of amicarbazone was ≈ 2-fold greater than annual bluegrass from 1 to 7 d after treatment (DAT). Results suggest greater absorption, more distribution, and less metabolism of amicarbazone in annual bluegrass, compared to creeping bentgrass and tall fescue, could be attributed to selectivity of POST applications.


2009 ◽  
Vol 23 (3) ◽  
pp. 425-430 ◽  
Author(s):  
Patrick E. McCullough ◽  
Stephen E. Hart

Bispyribac-sodium is an efficacious herbicide for annual bluegrass control in creeping bentgrass fairways, but turf tolerance and growth inhibition may be exacerbated by low mowing heights on putting greens. We conducted field and greenhouse experiments to investigate creeping bentgrass putting green tolerance to bispyribac-sodium. In greenhouse experiments, creeping bentgrass discoloration from bispyribac-sodium was exacerbated by reductions in mowing height from 24 to 3 mm, but mowing height did not influence clipping yields or root weight. In field experiments, discoloration of creeping bentgrass putting greens was greatest from applications of 37 g/ha every 10 d, compared to 74, 111, or 222 g/ha applied less frequently. Chelated iron effectively reduced discoloration of creeping bentgrass putting greens from bispyribac-sodium while trinexapac-ethyl inconsistently reduced these effects. Overall, creeping bentgrass putting greens appear more sensitive to bispyribac-sodium than higher mowed turf, but chelated iron and trinexapac-ethyl could reduce discoloration.


HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1552-1555 ◽  
Author(s):  
Darren W. Lycan ◽  
Stephen E. Hart

Previous research has demonstrated that bispyribac-sodium can selectively control established annual bluegrass (Poa annua L.) in creeping bentgrass (Agrostis stolonifera L.). Annual bluegrass is also a problematic weed in other cool-season turfgrass species. However, the relative tolerance of other cool-season turfgrass species to bispyribac is not known. Field experiments were conducted at Adelphia, N.J., in 2002 and 2003 to gain understanding of the phytotoxic effects that bispyribac may have on kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), tall fescue (Festuca arundinacea (L.) Schreb.), and chewings fine fescue (Festuca rubra L. subsp. commutata Gaud.). Single applications of bispyribac at 37 to 296 g·ha–1 were applied to mature stands of each species on 11 June, 2002 and 10 June, 2003. Visual injury was evaluated and clippings were collected 35 and 70 days after treatment (DAT). Visual injury at 35 DAT increased as bispyribac rate increased. Kentucky bluegrass was least tolerant to bispyribac with up to 28% injury when applied at 296 g·ha–1. Injury on other species did not exceed 20%. Initial injury on perennial ryegrass, tall fescue, and chewings fine fescue was primarily in the form of chlorosis, while kentucky bluegrass exhibited more severe stunting and thinning symptoms. Bispyribac at rates from 74 to 296 g·ha–1 reduced kentucky bluegrass clipping weights by 19% to 35%, respectively, as compared to the untreated control at 35 DAT in 2002. Initial visual injury on perennial ryegrass, tall fescue, and chewings fine fescue dissipated to ≤5% by 70 DAT. However, recovery of kentucky bluegrass was less complete. These studies suggest that bispyribac-sodium has potential to severely injure kentucky bluegrass. Injury on perennial ryegrass, tall fescue, and chewings fine fescue appears to be less severe and persistent; therefore, bispyribac can be used for weed control in these species. Chemical names used: 2,6-bis[(4,6-dimethoxy-2-pyrimidinyl)oxy]benzoic acid (bispyribac-sodium).


2019 ◽  
Vol 29 (4) ◽  
pp. 394-401 ◽  
Author(s):  
Thomas O. Green ◽  
John N. Rogers ◽  
James R. Crum ◽  
Joseph M. Vargas ◽  
Thomas A. Nikolai

Results suggest that sand topdressing was more consistent at reducing dollar spot (Clarireedia jacksonii) in fairway turfgrass more so than rolling. This practice could be an effective cost-saving alternative to reduce frequent fungicide applications. Research was conducted from 2011 to 2014 on a simulated golf fairway and examined dollar spot severity responses in a mixed-stand of creeping bentgrass (Agrostis stolonifera) and annual bluegrass (Poa annua ssp. reptans) to sand topdressing and rolling. Treatments consisted of biweekly sand topdressing, rolling at three frequencies (one, three, or five times weekly), a control, and three replications. Infection was visually estimated. Sand topdressing significantly (P < 0.05) reduced disease up to 50% at the peak of the dollar spot activity in 2011, 2013, and 2014. Results on the effects of rolling on dollar spot were inconsistent.


Weed Science ◽  
2013 ◽  
Vol 61 (2) ◽  
pp. 209-216 ◽  
Author(s):  
Patrick E. McCullough ◽  
Diego Gómez de Barreda ◽  
Jialin Yu

Methiozolin controls annual bluegrass in creeping bentgrass but application timing and temperature could influence efficacy in turf. In field experiments, sequential methiozolin applications totaling 3.36 kg ai ha−1provided excellent (> 90%) annual bluegrass control at 8 wk after initial treatment when treatments were initiated in February/March or May but programs totaling 0.84 and 1.68 kg ha−1provided poor control (< 70%) at both timings. Methiozolin at all rates caused minimal turf injury (< 8%) but creeping bentgrass was only injured from February/March applications. In growth chamber experiments, creeping bentgrass injury from methiozolin at 10 C was 2 and 4 times greater than at 20 C and 30 C, respectively, while annual bluegrass injury was similar across temperatures. In laboratory experiments, annual bluegrass had more foliar absorption of14C-methiozolin than creeping bentgrass at 30/25 C (day/night), compared to 15/10 C, but translocation was similar at both temperatures as > 90% of absorbed14C remained in the treated leaf after 72 h. Annual bluegrass distributed and recovered more radioactivity to shoots from root-applied14C-methiozolin than creeping bentgrass while both species had about 2 times more distribution to shoots at 30/25 C than 15/10 C. Metabolites were not detected in annual bluegrass or creeping bentgrass at 1, 3, or 7 d after treatment when grown at 15/10 C or 30/25 C suggesting uptake and translocation contributes to methiozolin selectivity in turfgrass.


2010 ◽  
Vol 24 (3) ◽  
pp. 332-335 ◽  
Author(s):  
Patrick E. McCullough ◽  
Stephen E. Hart

Bispyribac-sodium effectively controls annual bluegrass in creeping bentgrass fairways but efficacy on putting greens may be affected by management differences and thus, application regimes may need to be modified for effective annual bluegrass control. To test this hypothesis, field experiments investigated various bispyribac-sodium application regimens for annual bluegrass control on creeping bentgrass putting greens. Bispyribac-sodium regimes totaling 148, 222, and 296 g ha−1controlled annual bluegrass 81, 83, and 91%, respectively, over 2 yr. Pooled over herbicide rates, bispyribac-sodium applied two, three, and six times controlled annual bluegrass 78, 83, and 94%, respectively. The most effective bispyribac-sodium regime was 24.6 g ha−1applied weekly, which controlled annual bluegrass 90% after 8 wk with acceptable levels of creeping bentgrass discoloration. After 8 wk, all regimes reduced turf quality as a result of voids in turf following annual bluegrass control; regimes with six applications reduced turf quality the most.


2010 ◽  
Vol 24 (4) ◽  
pp. 461-470 ◽  
Author(s):  
Patrick E. McCullough ◽  
Stephen E. Hart ◽  
Dan Weisenberger ◽  
Zachary J. Reicher

Amicarbazone has potential for selective annual bluegrass control in cool-season turfgrasses, but seasonal application timings may influence efficacy. To test this hypothesis, field experiments in New Jersey and Indiana investigated amicarbazone efficacy from fall or spring applications and growth chamber experiments investigated the influence of temperature on efficacy. Fall treatments were more injurious to creeping bentgrass and Kentucky bluegrass than spring applications, but fall applications were also more efficacious for annual bluegrass control. In growth chamber experiments, injury and clipping weight reductions were exacerbated by increased temperatures from 10 to 30 C on annual bluegrass, creeping bentgrass, Kentucky bluegrass, and perennial ryegrass. Results suggest that amicarbazone use for annual bluegrass control in cool-season turf may be limited to spring applications, but increased temperature enhances activity on all grasses.


Sign in / Sign up

Export Citation Format

Share Document