THERMAL SHOCK PHENOMENA UNDER HIGH RATE RESPONSE IN SOLIDS

1992 ◽  
Vol 4 (4) ◽  
pp. 111-185 ◽  
Author(s):  
Da Yu Tzou
Keyword(s):  
2018 ◽  
Vol 14 (3) ◽  
pp. 410-430 ◽  
Author(s):  
Siddhartha Biswas ◽  
Soumen Shaw

Purpose The purpose of this paper is to analyze the thermal shock response on the deformation of circular hollow cylinder in a thermodynamically consistent manner. Design/methodology/approach The investigation is carried out under the light of generalized thermoelasticity theory with energy dissipation. In order to obtain the analytical expressions of the components of stress and strain fields, appropriate integral transform technique is adopted and the salient features are emphasized. Findings It has been observed that the existence of energy dissipation can minimize the development of the stress components into the cylindrical wall. Since more amount of heat is propagate into the medium in a short period of time consequently, the medium deformed in a high rate in presence of energy dissipation. Two special phenomena are also revealed in the particular cases. Originality/value The numerical simulated results are demonstrated through a numerous diagrams and some important observations are explained. This work may be helpful for those researchers who are devoted on several types of heat or fluid flow into the pipeline made with anisotropic solids.


Author(s):  
L. E. Murr ◽  
G. Wong

Palladium single-crystal films have been prepared by Matthews in ultra-high vacuum by evaporation onto (001) NaCl substrates cleaved in-situ, and maintained at ∼ 350° C. Murr has also produced large-grained and single-crystal Pd films by high-rate evaporation onto (001) NaCl air-cleaved substrates at 350°C. In the present work, very large (∼ 3cm2), continuous single-crystal films of Pd have been prepared by flash evaporation onto air-cleaved (001) NaCl substrates at temperatures at or below 250°C. Evaporation rates estimated to be ≧ 2000 Å/sec, were obtained by effectively short-circuiting 1 mil tungsten evaporation boats in a self-regulating system which maintained an optimum load current of approximately 90 amperes; corresponding to a current density through the boat of ∼ 4 × 104 amperes/cm2.


Author(s):  
W. J. Abramson ◽  
H. W. Estry ◽  
L. F. Allard

LaB6 emitters are becoming increasingly popular as direct replacements for tungsten filaments in the electron guns of modern electron-beam instruments. These emitters offer order of magnitude increases in beam brightness, and, with appropriate care in operation, a corresponding increase in source lifetime. They are, however, an order of magnitude more expensive, and may be easily damaged (by improper vacuum conditions and thermal shock) during saturation/desaturation operations. These operations typically require several minutes of an operator's attention, which becomes tedious and subject to error, particularly since the emitter must be cooled during sample exchanges to minimize damage from random vacuum excursions. We have designed a control system for LaBg emitters which relieves the operator of the necessity for manually controlling the emitter power, minimizes the danger of accidental improper operation, and makes the use of these emitters routine on multi-user instruments.Figure 1 is a block schematic of the main components of the control system, and Figure 2 shows the control box.


Author(s):  
A. Elgsaeter ◽  
T. Espevik ◽  
G. Kopstad

The importance of a high rate of temperature decrease (“rapid freezing”) when freezing specimens for freeze-etching has long been recognized1. The two basic methods for achieving rapid freezing are: 1) dropping the specimen onto a metal surface at low temperature, 2) bringing the specimen instantaneously into thermal contact with a liquid at low temperature and subsequently maintaining a high relative velocity between the liquid and the specimen. Over the last couple of years the first method has received strong renewed interest, particularily as the result of a series of important studies by Heuser and coworkers 2,3. In this paper we will compare these two freezing methods theoretically and experimentally.


2001 ◽  
Author(s):  
Z. Steel ◽  
J. Jones ◽  
S Adcock ◽  
R Clancy ◽  
L. Bridgford-West ◽  
...  

1989 ◽  
Vol 136 (5) ◽  
pp. 405 ◽  
Author(s):  
J. Sun ◽  
I.S. Reed ◽  
H.E. Huey ◽  
T.K. Truong

Sign in / Sign up

Export Citation Format

Share Document