DESIGN OF A COOLING SYSTEM FOR MICROCHIPS WITH HIGH HEAT-FLUX DENSITY USING INTEGRATED MICROCHANNELS

2017 ◽  
Vol 48 (14) ◽  
pp. 1299-1312
Author(s):  
Shufang Wang ◽  
Debao Zhou ◽  
Zhiyong Yang
Author(s):  
Jing Li ◽  
Shuanshi Fan ◽  
Zemin Yao ◽  
Jing Li ◽  
Xinli Wei

In this paper, in order to solve the problem of intensified heat dissipation in high power electronic devices, a fast transient and intensified heat dissipation technology was put forward by comparing many heat transfer modes based on the analytical study on the existing technologies about heat dissipation at high heat flux density and about fast heat transport. This technology combined spray cooling technology with fast endothermic chemical reaction processes; we summarized the characteristics of media applicable to an environment with transient high heat flux density by comparing various parameters of many sprayed media in the spray cooling process. According to the energy balance of endothermic chemical reactions of relevant media, we determined the media (mainly carbon dioxide hydrate) applicable to the fast transient and intensified heat dissipation technology and presented the conditions for the chemical reactions. We analyzed the methods controlling the instantaneous chemical reaction rate and proposed the structural characteristics of the chemical reactor so as to ensure that the time for heat removal will be control to around 0.01 second. Thus, the problem of fast transient heat dissipation in high power electronic devices, etc. would be radically solved.


Author(s):  
Shinichi Miura ◽  
Yukihiro Inada ◽  
Yasuhisa Shinmoto ◽  
Haruhiko Ohta

Advance of an electronic technology has caused the increase of heat generation density for semiconductors densely integrated. Thermal management becomes more important, and a cooling system for high heat flux is required. It is extremely effective to such a demand using flow boiling heat transfer because of its high heat removal ability. To develop the cooling system for a large area at high heat flux, the cold plate structure of narrow channels with auxiliary unheated channel for additional liquid supply was devised and confirmed its validity by experiments. A large surface of 150mm in heated length and 30mm in width with grooves of an apex angle of 90 deg, 0.5mm depth and 1mm in pitch was employed. A structure of narrow rectangular heated channel between parallel plates with an unheated auxiliary channel was employed and the heat transfer characteristics were examined by using water for different combinations of gap sizes and volumetric flow rates. Five different liquid distribution modes were tested and their data were compared. The values of CHF larger than 1.9×106W/m2 for gap size of 2mm under mass velocity based on total volumetric flow rate and on the cross section area of main heated channel 720kg/m2s or 1.7×106W/m2 for gap size of 5mm under 290kg/m2s were obtained under total volumetric flow rate 4.5×10−5m3/s regardless of the liquid distribution modes. Under several conditions, the extensions of dry-patches were observed at the upstream location of the main heated channel resulting burnout not at the downstream but at the upstream. High values of CHF larger than 2×106W/m2 were obtained only for gap size of 2mm. The result indicates that higher mass velocity in the main heated channel is more effective for the increase in CHF. It was clarified that there is optimum flow rate distribution to obtain the highest values of CHF. For gap size of 2mm, high heat transfer coefficient as much as 7.4×104W/m2K were obtained at heat flux 1.5×106W/m2 under mass velocity 720kg/m2s based on total volumetric flow rate and on the cross section area of main heated channel. Also to obtain high heat transfer coefficient, it is more useful to supply the cooling liquid from the auxiliary unheated channel for additional liquid supply in the transverse direction perpendicular to the flow in the main heated channel.


Author(s):  
Rongliang Zhou ◽  
Juan Catano ◽  
Tiejun Zhang ◽  
John T. Wen ◽  
Greg J. Michna ◽  
...  

Steady-state modeling and analysis of a two-loop cooling system for high heat flux removal applications are studied. The system structure proposed consists of a primary pumped loop and a vapor compression cycle (VCC) as the secondary loop to which the pumped loop rejects heat. The pumped loop consists of evaporator, condenser, pump, and bladder liquid accumulator. The pumped loop evaporator has direct contact with the heat generating device and CHF must be higher than the imposed heat fluxes to prevent device burnout. The bladder liquid accumulator adjusts the pumped loop pressure level and, hence, the subcooling of the refrigerant to avoid pump cavitation and to achieve high critical heat flux (CHF) in the pumped loop evaporator. The vapor compression cycle of the two-loop cooling system consists of evaporator, liquid accumulator, compressor, condenser and electronic expansion valve. It is coupled with the pumped loop through a fluid-to-fluid heat exchanger that serves as both the vapor compression cycle evaporator and the pumped loop condenser. The liquid accumulator of the vapor compression cycle regulates the cycle active refrigerant charge and provides saturated vapor to the compressor at steady state. The heat exchangers are modeled with the mass, momentum, and energy balance equations. Due to the projected incorporation of microchannels in the pumped loop to enhance the heat transfer in heat sinks, the momentum equation, rarely seen in previous refrigeration system modeling efforts, is included to capture the expected significant microchannel pressure drop witnessed in previous experimental investigations. Electronic expansion valve, compressor, pump, and liquid accumulators are modeled as static components due to their much faster dynamics compared with heat exchangers. The steady-state model can be used for static system design that includes determining the total refrigerant charge in the vapor compression cycle and the pumped loop to accommodate the varying heat load, sizing of various components, and parametric studies to optimize the operating conditions for a given heat load. The effect of pumped loop pressure level, heat exchangers geometries, pumped loop refrigerant selection, and placement of the pump (upstream or downstream of the evaporator) are studied. The two-loop cooling system structure shows both improved coefficient of performance (COP) and CHF overthe single loop vapor compression cycle investigated earlier by authors for high heat flux removal.


Author(s):  
Oyuna Angatkina ◽  
Andrew Alleyne

Two-phase cooling systems provide a viable technology for high–heat flux rejection in electronic systems. They provide high cooling capacity and uniform surface temperature. However, a major restriction of their application is the critical heat flux condition (CHF). This work presents model predictive control (MPC) design for CHF avoidance in two-phase pump driven cooling systems. The system under study includes multiple microchannel heat exchangers in series. The MPC controller performance is compared to the performance of a baseline PI controller. Simulation results show that while both controllers are able to maintain the two-phase cooling system below CHF, MPC has significant reduction in power consumption compared to the baseline controller.


2019 ◽  
Vol 163 ◽  
pp. 114338 ◽  
Author(s):  
Fengze Hou ◽  
Wenbo Wang ◽  
Hengyun Zhang ◽  
Cheng Chen ◽  
Chuan Chen ◽  
...  

Author(s):  
Xiao-Yu Wu ◽  
Dan Huang ◽  
Wei Li ◽  
Guo-Qiang Xu ◽  
Zhi Tao ◽  
...  

Regenerative cooling system is thought to be an effective and practical solution to better thermal management for high heat flux applications. In this paper, we examined the effects of solid particles mixed with fuels on the heat transfer performances of supercritical fuel coolant. Two-step method was applied to prepare Fe3O4-kerosene fluids. Experiments were carried out to study the heat transfer characteristics of fuel-particle mixtures flowing in a vertical tube at supercritical pressures. Results show that there are three different heat transfer mechanisms at the in-, mid- and ex-sections along the tube; increasing the flow rate or the working pressure could enhance the heat transfer performances, yet higher heat flux leads to poorer heat transfer performances. Besides, the addition of solid particles deteriorates the heat transfer performances of the fuel coolant through the modification of inner wall surfaces. As the particle content increases, the heat transfer performance becomes worse.


Sign in / Sign up

Export Citation Format

Share Document