Heat Transfer Problems of Bypass Laminar-Turbulent Transition

1998 ◽  
Vol 29 (1-3) ◽  
pp. 54-65
Author(s):  
E. P. Dyban ◽  
Eleonora Ya. Epik
Author(s):  
Mahmoud L. Mansour ◽  
Khosro Molla Hosseini ◽  
Jong S. Liu ◽  
Shraman Goswami

This paper presents a thorough assessment for two of the contemporary CFD programs available for modeling and predicting nonfilm-cooled surface heat transfer distributions on turbine airfoil surfaces. The CFD programs are capable of predicting laminar-turbulent transition and have been evaluated and validated against five test cases with experimental data. The suite of test cases considered for this study consists of two flat plat cases at zero and non-zero pressure gradient and three linear-turbine-cascade test cases that are representative of modern high pressure turbine designs. The flat plate test cases are the ERCOFTAC T3A and T3C2, while the linear turbine cascade cases are the MARKII, the Virginia Polytechnic Institute (VPI), and the Von Karman Institute (VKI) turbine cascades. The numerical tools assessed in this study are 3D viscous Reynolds Averaged-Navier-Stokes (RANS) equations programs that employ a variety of one-equation and two-equation models for turbulence closure. The assessment study focuses on the one-equation Spalart and Allmaras and the two-equation shear stress transport K-ω turbulence models with the ability of modeling and predicting laminar-turbulent transition. The RANS 3D viscous codes are Numeca’s Fine Turbo and ANSYS-CFX’ CFX5. Numerical results for skin friction, surface temperature distribution and heat transfer coefficient from the CFD programs are compared to measured experimental data. Sensitivity of the predictions to free stream turbulence and to inlet turbulence boundary conditions is also presented. The results of the study clearly illustrate the superiority of using the laminar-turbulent transition prediction in improving the accuracy of predicting the heat transfer coefficient on the surfaces of high pressure turbine airfoils.


Sign in / Sign up

Export Citation Format

Share Document