TEMPERATURE AND THERMAL STRESS PROFILES IN SEMI-TRANSPARENT PARTICLES HEATED BY CONCENTRATED SOLAR RADIATION

Equipment ◽  
2006 ◽  
Author(s):  
Wojciech Lipinski ◽  
Leonid A. Dombrovsky
Solar Energy ◽  
2010 ◽  
Vol 84 (10) ◽  
pp. 1809-1815 ◽  
Author(s):  
Fuqiang Wang ◽  
Yong Shuai ◽  
Yuan Yuan ◽  
Guo Yang ◽  
Heping Tan

2008 ◽  
Vol 130 (1) ◽  
Author(s):  
David Riveros-Rosas ◽  
Marcelino Sánchez-González ◽  
Claudio A. Estrada

In order to improve the durability of receivers used in solar concentrating systems, it is necessary to minimize thermal stress during their operation. A possible way to do that is to design receivers in which the radiative flux density is homogeneous at the surface. For this reason, a detailed 3D study has been carried out for the distribution of concentrated solar radiation in the focal zone of a parabolic concentrator. A computer program has been developed to obtain isosurfaces of solar irradiance and achieve a homogeneous radiation flux on the receiver surface. The algorithm of the program proposes a methodology to obtain flux isosurfaces for a great variety of optical configurations. The effect of the optical errors on the mirror surface has been studied, as well as the effect of the shape of the mirror, e.g., round, square, or faceted. The numerical calculations were made using the convolution ray tracing technique.


Author(s):  
Jaan Taagepera ◽  
Marty Clift ◽  
D. Mike DeHart ◽  
Keneth Marden

Three vessel modifications requiring heat treatment were analyzed prior to and during a planned turnaround at a refinery. One was a thick nozzle that required weld build up. This nozzle had been in hydrogen service and required bake-out to reduce the potential for cracking during the weld build up. Finite element analysis was used to study the thermal stresses involved in the bake-out. Another heat treatment studied was a PWHT of a nozzle replacement. The heat treatment band and temperature were varied with location in order to minimize cost and reduction in remaining strength of the vessel. Again, FEA was used to provide insight into the thermal stress profiles during heat treatment. The fmal heat treatment study was for inserting a new nozzle in a 1-1/4Cr-1/2Mo reactor. While this material would ordinarily require PWHT, the alteration was proposed to be installed without PWHT. Though accepted by the Jurisdiction, this nozzle installation was ultimately cancelled.


2017 ◽  
Vol 10 (5) ◽  
pp. 1142-1149 ◽  
Author(s):  
Daniel Marxer ◽  
Philipp Furler ◽  
Michael Takacs ◽  
Aldo Steinfeld

Solar reactor technology for splitting CO2via a 2-step thermochemical redox cycle using concentrated solar radiation.


Concentrating Solar Power (CSP) focuses sunlight in order to use the heat energy of the sun. In a central receiver system configuration, many mirrors (heliostats) individually track the sun and reflect the concentrated solar energy onto a receiver on top of a tower. The receiver contains the working fluid which is heated by the concentrated solar radiation. The useful energy that absorbed by the water flows through the receiver in solar tower plant depending on the angle between the solar rays and the position of heliostat in the region of work. Heliostat will reflect the incident solar radiation in the direction of the receiver founded in the top of the tower, in order to get a maximum incident solar radiation on the heliostat reflection area. Because of the cosine factor loss effect due to the sun position is variable along the day from sunrise to sunset, which must be in a minimum value, therefore an automated tracking system with dual axes as a control system with sensors had been built and used to stay the sunrays incident on the receiver, and enable the heliostat to flow the sun where it was


Sign in / Sign up

Export Citation Format

Share Document