scholarly journals Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency

2017 ◽  
Vol 10 (5) ◽  
pp. 1142-1149 ◽  
Author(s):  
Daniel Marxer ◽  
Philipp Furler ◽  
Michael Takacs ◽  
Aldo Steinfeld

Solar reactor technology for splitting CO2via a 2-step thermochemical redox cycle using concentrated solar radiation.

2018 ◽  
Vol 4 (2) ◽  
pp. 173
Author(s):  
H Zhang ◽  
S J Pang ◽  
Z J Luo ◽  
Y Shuai ◽  
H P Tan

.


2001 ◽  
Vol 123 (2) ◽  
pp. 164-170 ◽  
Author(s):  
Hans Rudolf Tschudi ◽  
Gerd Morian

Surface temperatures are key parameters in many applications of concentrated solar radiation. Pyrometric temperature determination is, however, hampered by reflected solar radiation. Two approaches to solve this problem were experimentally tested on a solar reactor at the Paul Scherrer Institute (PSI): the flash assisted multi-wavelength pyrometry (FAMP) developed at PSI and a solar-blind pyrometer developed by the IMPAC Electronic GmbH in Frankfurt, Germany, in collaboration with PSI. Performance, advantages, and disadvantages of the two pyrometers are reported and discussed.


2019 ◽  
Vol 141 (2) ◽  
Author(s):  
S. Zoller ◽  
E. Koepf ◽  
P. Roos ◽  
A. Steinfeld

This work reports on the development of a transient heat transfer model of a solar receiver–reactor designed for thermochemical redox cycling by temperature and pressure swing of pure cerium dioxide in the form of a reticulated porous ceramic (RPC). In the first, endothermal step, the cerium dioxide RPC is directly heated with concentrated solar radiation to 1500 °C while under vacuum pressure of less than 10 mbar, thereby releasing oxygen from its crystal lattice. In the subsequent, exothermic step, the reactor is repressurized with carbon dioxide as it cools, and at temperatures below 1000 °C, the partially reduced cerium dioxide is re-oxidized with a flow of carbon dioxide. To analyze the performance of the solar reactor and to gain insight into improved design and operational conditions, a transient heat transfer model of the solar reactor for a solar radiative input power of 50 kW during the reduction step was developed and implemented in ANSYS cfx. The numerical model couples the incoming concentrated solar radiation using Monte Carlo ray tracing, incorporates the reduction chemistry by assuming thermodynamic equilibrium, and accounts for internal radiation heat transfer inside the porous ceria by applying effective heat transfer properties. The model was experimentally validated using data acquired in a high-flux solar simulator (HFSS), where temperature evolution and oxygen production results from model and experiment agreed well. The numerical results indicate the prominent influence of solar radiative input power, where increasing it substantially reduces reduction time of the cerium dioxide structure. Consequently, the model predicts a solar-to-fuel energy conversion efficiency of >6% at a solar radiative power input of 50 kW; efficiency >10% can be obtained provided the RPC macroporosity is substantially increased, and better volumetric absorption and uniform heating is achieved. Managing the ceria surface temperature during reduction to avoid sublimation is a critical design consideration for direct absorption solar receiver–reactors.


Concentrating Solar Power (CSP) focuses sunlight in order to use the heat energy of the sun. In a central receiver system configuration, many mirrors (heliostats) individually track the sun and reflect the concentrated solar energy onto a receiver on top of a tower. The receiver contains the working fluid which is heated by the concentrated solar radiation. The useful energy that absorbed by the water flows through the receiver in solar tower plant depending on the angle between the solar rays and the position of heliostat in the region of work. Heliostat will reflect the incident solar radiation in the direction of the receiver founded in the top of the tower, in order to get a maximum incident solar radiation on the heliostat reflection area. Because of the cosine factor loss effect due to the sun position is variable along the day from sunrise to sunset, which must be in a minimum value, therefore an automated tracking system with dual axes as a control system with sensors had been built and used to stay the sunrays incident on the receiver, and enable the heliostat to flow the sun where it was


2016 ◽  
Vol 30 (8) ◽  
pp. 6654-6661 ◽  
Author(s):  
Brandon J. Hathaway ◽  
Rohini Bala Chandran ◽  
Adam C. Gladen ◽  
Thomas R. Chase ◽  
Jane H. Davidson

2009 ◽  
Vol 45 (2) ◽  
pp. 102-104
Author(s):  
G. T. Adylov ◽  
M. A. Zufarov ◽  
G. V. Voronov ◽  
N. A. Kulagina ◽  
E. P. Mansurova ◽  
...  

2018 ◽  
Vol 20 (5) ◽  
pp. 321-323
Author(s):  
Sh. Payziyev ◽  
Kh. Makhmudov ◽  
S. Bakhramov ◽  
A. Kasimov

On the basis of the active element of Ti3+:Al2O3, the possibility of converting solar energy into laser radiation energy is investigated. By the computer simulations, it was shown the possibility of reducing the threshold pump power by choosing the optimal geometry of the crystal parameters for end-pumping scheme of concentrated solar radiation.


Sign in / Sign up

Export Citation Format

Share Document