A STUDY OF THE HEAT TRANSFER PROCESSES IN BANKS OF FINNED TUBES IN CROSS FLOW, USING A LARGE SCALE MODEL TECHNIQUE

2019 ◽  
Author(s):  
S. B. H. C. Neal ◽  
J. A. Hitchcock
Author(s):  
Andrew C. Chambers ◽  
David R. H. Gillespie ◽  
Peter T. Ireland ◽  
Geoffrey M. Dailey

Impingement channels are often used in turbine blade cooling configurations. This paper examines the heat transfer performance of a typical integrally cast impingement channel. Detailed heat transfer coefficient distributions on all heat transfer surfaces were obtained in a series of low temperature experiments carried out in a large-scale model of a turbine cooling system using liquid crystal techniques. All experiments were performed on a model of a 19-hole, low aspect ratio impingement channel. The effect of flow introduced at the inlet to the channel on the impingement heat transfer within the channel was investigated. A novel test technique has been applied to determine the effect of the initial cross flow on jet penetration. The experiments were performed at an engine representative Reynolds number of 20,000 and examined the effect of additional initial cross flow up to 10% of the total mass flow.


1984 ◽  
Vol 106 (1) ◽  
pp. 222-228 ◽  
Author(s):  
M. L. Marziale ◽  
R. E. Mayle

An experimental investigation was conducted to examine the effect of a periodic variation in the angle of attack on heat transfer at the leading edge of a gas turbine blade. A circular cylinder was used as a large-scale model of the leading edge region. The cylinder was placed in a wind tunnel and was oscillated rotationally about its axis. The incident flow Reynolds number and the Strouhal number of oscillation were chosen to model an actual turbine condition. Incident turbulence levels up to 4.9 percent were produced by grids placed upstream of the cylinder. The transfer rate was measured using a mass transfer technique and heat transfer rates inferred from the results. A direct comparison of the unsteady and steady results indicate that the effect is dependent on the Strouhal number, turbulence level, and the turbulence length scale, but that the largest observed effect was only a 10 percent augmentation at the nominal stagnation position.


2005 ◽  
Vol 127 (4) ◽  
pp. 358-365 ◽  
Author(s):  
Andrew C. Chambers ◽  
David R. H. Gillespie ◽  
Peter T. Ireland ◽  
Geoffrey M. Dailey

Impingement channels are often used in turbine blade cooling configurations. This paper examines the heat transfer performance of a typical integrally cast impingement channel. Detailed heat transfer coefficient distributions on all heat transfer surfaces were obtained in a series of low temperature experiments carried out in a large-scale model of a turbine cooling system using liquid crystal techniques. All experiments were performed on a model of a 19-hole, low aspect ratio impingement channel. The effect of flow introduced at the inlet to the channel on the impingement heat transfer within the channel was investigated. A novel test technique has been applied to determine the effect of the initial cross flow on jet penetration. The experiments were performed at an engine representative Reynolds number of 20,000 and examined the effect of additional initial cross flow up to 10 percent of the total mass flow. It was shown that initial cross flow strongly influenced the heat transfer performance with just 10 percent initial cross flow able to reduce the mean target plate jet effectiveness by 57 percent.


2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.


1989 ◽  
Author(s):  
R. DE GAAIJ ◽  
E. VAN RIETBERGEN ◽  
M. SLEGERS

Sign in / Sign up

Export Citation Format

Share Document