Model of Elastohydrodynamic Lubrication with Molecularly Thin Lubricating Films. Part II: Results for an Exemplary Lubrication

2003 ◽  
Vol 30 (5) ◽  
pp. 558-571 ◽  
Author(s):  
Yongbin Zhang ◽  
Guoshen Lu
2021 ◽  
Author(s):  
Yong Zheng ◽  
Changqing Wang ◽  
Chao Pu ◽  
Jiayu Gong ◽  
Fanming Meng

Author(s):  
Armando Félix Quiñonez ◽  
Guillermo E Morales Espejel

This work investigates the transient effects of a single subsurface inclusion over the pressure, film thickness, and von Mises stress in a line elastohydrodynamic lubrication contact. Results are obtained with a fully-coupled finite element model for either a stiff or a soft inclusion moving at the speed of the surface. Two cases analyzed consider the inclusion moving either at the same speed as the mean velocity of the lubricant or moving slower. Two additional cases investigate reducing either the size of the inclusion or its stiffness differential with respect to the matrix. It is shown that the well-known two-wave elastohydrodynamic lubrication mechanism induced by surface features is also applicable to the inclusions. Also, that the effects of the inclusion become weaker both when its size is reduced and when its stiffness approaches that of the matrix. A direct comparison with predictions by the semi-analytical model of Morales-Espejel et al. ( Proc IMechE, Part J: J Engineering Tribology 2017; 231) shows reasonable qualitative agreement. Quantitatively some differences are observed which, after accounting for the semi-analytical model's simplicity, physical agreement, and computational efficiency, may then be considered as reasonable for engineering applications.


2013 ◽  
Vol 420 ◽  
pp. 30-35
Author(s):  
Khanittha Wongseedakaew ◽  
Jesda Panichakorn

This paper presents the effects of rough surface air-soft elastohydrodynamic lubrication (EHL) of rollers for soft material under the effect of air molecular slip. The time independent modified Reynolds equation and elasticity equation were solved numerically using finite different method, Newton-Raphson method and multigrid multilevel methods were used to obtain the film pressure profiles and film thickness in the contact region. The effects of amplitude of surface roughness, modulus of elasticity and air inlet temperature are examined. The simulation results showed surface roughness has effect on film thickness but it little effect to air film pressure. When the amplitude of surface roughness and modulus of elasticity increased, the air film thickness decreased but air film pressure increased. However, the air inlet temperature increased when the air film thickness increased.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
W. Wu ◽  
J. Wang ◽  
C. H. Venner

A high-order polynomial gas distribution cam mechanism is investigated theoretically from the viewpoint of thermal elastohydrodynamic lubrication (EHL). First, a cam with a larger base circle radius is employed, which results in slide–roll ratio 2.0 < S < 9.0 when the two surfaces move oppositely. The pressure, film thickness, and temperature profiles at a number of angular positions of the cam are presented, together with the isothermal results. The comparison between thermal and isothermal oil characteristics is also shown. It is revealed that the isothermal analysis partly overestimates the actual film thickness and it also misses some essential local phenomena. Second, a cam with a smaller base circle radius is studied, which leads to drastic variations in the slide–roll ratio which encounters four times’ occurrences of infinity in one working period. The pressure, film thickness, and temperature profiles at some angular cam positions together with the oil characteristics are given, showing much dramatic variations. A very small film thickness is observed at the contact of the tappet with the start of the cam basic segment, which suggests a possible risk of direct contact of both surfaces.


Author(s):  
Eduardo de la Guerra Ochoa ◽  
Javier Echávarri Otero ◽  
Enrique Chacón Tanarro ◽  
Benito del Río López

This article presents a thermal resistances-based approach for solving the thermal-elastohydrodynamic lubrication problem in point contact, taking the lubricant rheology into account. The friction coefficient in the contact is estimated, along with the distribution of both film thickness and temperature. A commercial tribometer is used in order to measure the friction coefficient at a ball-on-disc point contact lubricated with a polyalphaolefin base. These data and other experimental results available in the bibliography are compared to those obtained by using the proposed methodology, and thermal effects are analysed. The new approach shows good accuracy for predicting the friction coefficient and requires less computational cost than full thermal-elastohydrodynamic simulations.


Sign in / Sign up

Export Citation Format

Share Document