A central film thickness formula for elastohydrodynamic lubrication of cylinders with soft incompressible coatings and a non-Newtonian piecewise power-law lubricant in steady rolling motion

Wear ◽  
1997 ◽  
Vol 205 (1-2) ◽  
pp. 20-27 ◽  
Author(s):  
M. Hlaváček
Author(s):  
Mongkol Mongkolwongrojn ◽  
Khanittha Wongseedakaew ◽  
Francis E. Kennedy

This paper presents the analysis of elastohydrodynamic lubrication (EHL) of two parallel cylinders in line contact with non-Newtonian fluids under oscillatory motion. The effects of transverse harmonic surface roughness are also investigated in the numerical simulation. The time-dependent Reynolds equation uses a power law model for viscosity. The simultaneous system of modified Reynolds equation and elasticity equation with initial conditions was solved using multi-grid multi-level method with full approximation technique. Film thickness and pressure profiles were determined for smooth and rough surfaces in the oscillatory EHL conjunctions, and the film thickness predictions were verified experimentally. For an increase in the applied load on the cylinders, the minimum film thickness calculated numerically becomes smaller. The predicted film thickness is slightly higher than the film thickness obtained experimentally, owing to cavitation that occurred in the experiments. For both hard and soft EHL contacts, the minimum film thickness under oscillatory motion is very thin near the trailing edge of the contact, especially for stiffer surfaces. The surface roughness and power law index of the non-Newtonian lubricant both have significant effects on the film thickness and pressure profile between the cylinders under oscillatory motion.


Author(s):  
Samuel Macharia Karimi ◽  
Duncan Kioi Gathungu

The aim of this paper is to analyse thermal elastohydrodynamic lubrication (TEHL) line contact of rolling a bearing using a non-Newtonian uid that is described by the power law model. The performance characteristics of the rolling bearing are determined for various index for dilatant, Newtonian and pseudo plastic uids. The one-dimensional Reynolds and energy equations are both modied to incorporate the non-Newtonian nature of the lubricant. The coupled system of governing equations are discretized using the finite difference method and solved simultaneously. The results show that the pressure, film thickness and temperature for dilatant uids increased with increase in the ow index as compared to pseudo plastic uids. The in uence of thermal effects on pressure and lm thickness is more significant compared with that under isothermal elastohydrodynamic lubrication especially on the case of dilatant uids. The viscosity of the lubricant increases with increase in pressure and reduces with increment in temperature. The surface roughness in the bearing surface increases the lm thickness of the lubricant. The uid pressure, film thickness and temperature increases with increase in the bearing speed. To truly re ect the characteristics of EHL models, thermal effects should be considered.


1998 ◽  
Vol 120 (3) ◽  
pp. 470-475 ◽  
Author(s):  
C. M. Rodkiewicz ◽  
P. Huang

Thermo-elastohydrodynamic lubrication is considered. A numerical procedure for obtaining the maximum allowable load is presented. The maximum allowable load is defined as the load which, for a given set of parameters, when exceeded will cause either change of the lubrication character, or collapse of the fluid film if the film thickness was large relative to the surface roughness. The procedure is illustrated by applying it to the infinitely wide thrust bearings lubricated by the Newtonian or power-law fluid.


2013 ◽  
Vol 420 ◽  
pp. 30-35
Author(s):  
Khanittha Wongseedakaew ◽  
Jesda Panichakorn

This paper presents the effects of rough surface air-soft elastohydrodynamic lubrication (EHL) of rollers for soft material under the effect of air molecular slip. The time independent modified Reynolds equation and elasticity equation were solved numerically using finite different method, Newton-Raphson method and multigrid multilevel methods were used to obtain the film pressure profiles and film thickness in the contact region. The effects of amplitude of surface roughness, modulus of elasticity and air inlet temperature are examined. The simulation results showed surface roughness has effect on film thickness but it little effect to air film pressure. When the amplitude of surface roughness and modulus of elasticity increased, the air film thickness decreased but air film pressure increased. However, the air inlet temperature increased when the air film thickness increased.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
W. Wu ◽  
J. Wang ◽  
C. H. Venner

A high-order polynomial gas distribution cam mechanism is investigated theoretically from the viewpoint of thermal elastohydrodynamic lubrication (EHL). First, a cam with a larger base circle radius is employed, which results in slide–roll ratio 2.0 < S < 9.0 when the two surfaces move oppositely. The pressure, film thickness, and temperature profiles at a number of angular positions of the cam are presented, together with the isothermal results. The comparison between thermal and isothermal oil characteristics is also shown. It is revealed that the isothermal analysis partly overestimates the actual film thickness and it also misses some essential local phenomena. Second, a cam with a smaller base circle radius is studied, which leads to drastic variations in the slide–roll ratio which encounters four times’ occurrences of infinity in one working period. The pressure, film thickness, and temperature profiles at some angular cam positions together with the oil characteristics are given, showing much dramatic variations. A very small film thickness is observed at the contact of the tappet with the start of the cam basic segment, which suggests a possible risk of direct contact of both surfaces.


Author(s):  
Eduardo de la Guerra Ochoa ◽  
Javier Echávarri Otero ◽  
Enrique Chacón Tanarro ◽  
Benito del Río López

This article presents a thermal resistances-based approach for solving the thermal-elastohydrodynamic lubrication problem in point contact, taking the lubricant rheology into account. The friction coefficient in the contact is estimated, along with the distribution of both film thickness and temperature. A commercial tribometer is used in order to measure the friction coefficient at a ball-on-disc point contact lubricated with a polyalphaolefin base. These data and other experimental results available in the bibliography are compared to those obtained by using the proposed methodology, and thermal effects are analysed. The new approach shows good accuracy for predicting the friction coefficient and requires less computational cost than full thermal-elastohydrodynamic simulations.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
J. Wang ◽  
C. H. Venner ◽  
A. A. Lubrecht

The effect of single-sided and double-sided harmonic surface waviness on the film thickness, pressure, and temperature oscillations in an elastohydrodynamically lubricated eccentric-tappet pair has been investigated in relation to the eccentricity and the waviness wavelength. The results show that, during one working cycle, the waviness causes significant fluctuations of the oil film, pressure, and temperature, as well as a reduction in minimum film thickness. Smaller wavelength causes more dramatic variations in oil film. The fluctuations of the pressure, film thickness, temperature, and traction coefficient caused by double-sided waviness are nearly the same compared with the single-sided waviness, but the variations are less intense.


Author(s):  
Fadi Ali ◽  
Ivan Křupka ◽  
Martin Hartl

This study presents experimental results on the effect of out-of-contact lubricant channeling on the tribological performance of nonconformal contacts under starved lubrication. Channeling of lubricant was carried out by adding a slider with a limited slot for scraping the displaced lubricant on one of mating surfaces (ball). Thus, the scraped lubricant is forced to flow back into the depleted track through the limited slot resulting in robust replenishment. The measurements have been conducted using optical tribometer (ball-on-disc) equipped with a digital camera and torque sensor. The effect of lubricant channeling was compared to the original contact condition by means of measuring friction and film thickness. The results show that the out-of-contact lubricant channeling leads to a significant enhancement of film thickness and friction reduction under starved conditions. Indeed, the starved elastohydrodynamic lubrication contacts transformed to the fully flooded regime after introducing the flow reconditioning. Moreover, the film thickness decay over time, which is common with starved elastohydrodynamic lubrication contacts, has not been observed in the case of lubricant channeling. However, the beneficial effect of lubricant channeling diminishes as the original contact condition tends to the fully flooded regime. The results of this study can be easily implemented in practical applications such as radial and thrust rolling-element bearings.


Author(s):  
Marius Wolf ◽  
Sergey Solovyev ◽  
Fatemi Arshia

In this paper, analytical equations for the central film thickness in slender elliptic contacts are investigated. A comparison of state-of-the-art formulas with simulation results of a multilevel elastohydrodynamic lubrication solver is conducted and shows considerable deviation. Therefore, a new film thickness formula for slender elliptic contacts with variable ellipticity is derived. It incorporates asymptotic solutions, which results in validity over a large parameter domain. It captures the behaviour of increasing film thickness with increasing load for specific very slender contacts. The new formula proves to be significantly more accurate than current equations. Experimental studies and discussions on minimum film thickness will be presented in a subsequent publication.


Author(s):  
I. I. Kudish ◽  
P. Kumar ◽  
M. M. Khonsary ◽  
S. Bair

The prediction of elastohydrodynamic lubrication (EHL) film thickness requires knowledge of the lubricant properties. Today, in many instances, the properties have been obtained from a measurement of the central film thickness in an optical EHL point contact simulator and the assumption of a classical Newtonian film thickness formula. This technique has the practical advantage of using an effective pressure-viscosity coefficient which compensates for shear-thinning. We have shown by a perturbation analysis and by a full EHL numerical solution that the practice of extrapolating from a laboratory scale measurement of film thickness to the film thickness of an operating contact within a real machine may substantially overestimate the film thickness in the real machine if the machine scale is smaller and the lubricant is shear-thinning in the inlet zone.


Sign in / Sign up

Export Citation Format

Share Document