Thermal Elastohydrodynamic Lubrication of an Optimized Cam–Tappet Pair in Smooth Contact

2015 ◽  
Vol 138 (2) ◽  
Author(s):  
W. Wu ◽  
J. Wang ◽  
C. H. Venner

A high-order polynomial gas distribution cam mechanism is investigated theoretically from the viewpoint of thermal elastohydrodynamic lubrication (EHL). First, a cam with a larger base circle radius is employed, which results in slide–roll ratio 2.0 < S < 9.0 when the two surfaces move oppositely. The pressure, film thickness, and temperature profiles at a number of angular positions of the cam are presented, together with the isothermal results. The comparison between thermal and isothermal oil characteristics is also shown. It is revealed that the isothermal analysis partly overestimates the actual film thickness and it also misses some essential local phenomena. Second, a cam with a smaller base circle radius is studied, which leads to drastic variations in the slide–roll ratio which encounters four times’ occurrences of infinity in one working period. The pressure, film thickness, and temperature profiles at some angular cam positions together with the oil characteristics are given, showing much dramatic variations. A very small film thickness is observed at the contact of the tappet with the start of the cam basic segment, which suggests a possible risk of direct contact of both surfaces.

Author(s):  
Binbin Zhang ◽  
Jing Wang

In the current study, in order to obtain a thick film thickness under zero entrainment velocity at low surface velocity, the effects of ambient viscosity, pressure–viscosity index of the lubricant, and the surface waviness are investigated numerically based on a thermal elastohydrodynamic lubrication mathematical model. The increasing ambient viscosity and modest waviness can deepen the dimple by a stronger “temperature-viscosity wedge” effect. With the combined effect of ambient viscosity, pressure–viscosity index, and surface waviness, a small centralized dimple in smooth contact evolves into a big classical one together with the disappearance of the former thin droopy film thickness.


The film shape, pressure and temperature profiles have been measured in a disk machine under conditions of elastohydrodynamic lubrication. They were obtained with a new design of transducer which enables the various measurements to be accurately inter-related. In the case of the film shape and pressure measurements the corresponding theoretical solutions have been calculated and detailed comparison made. It has been shown that the sharp peaks of pressure near the outlet which are predicted in the theory are in practice considerably attenuated but do occur in the correct positions. The associated dip in film thickness is also much reduced. Johnson’s recent postulate that the position of the pressure spike should be a function of a single parameter has been examined and found to hold for this new range of experimental data.


2020 ◽  
Vol 72 (6) ◽  
pp. 713-722
Author(s):  
Hongwei Tang ◽  
Jing Wang ◽  
Nannan Sun ◽  
Jianrong Zhu

Purpose The influence of the cam angular speed on the pressure, film thickness and temperature profiles at some selected angular positions together with the oil characteristics are investigated. Design/methodology/approach A high-order polynomial cam is used, and thermal elastohydrodynamic lubrication (EHL) calculations are carried out by the multi-grid method and line-line scanning technique. Findings It is found that the film thickness decreases with a decrease in angular speed. The depth of the dimple that occurred in the reverse motion is also reduced because of the recession in the “temperature–viscosity wedge” effect. Originality/value It is revealed that the reduction in the cam angular speed makes the classical big surface dimple evolve into a small centralized dimple during the opposite sliding motion. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2019-0327


Author(s):  
Daizhong Su

Abstract The aim of this research is to investigate the effects of design parameters on disc cams’ loading capacity. A kinematic-Hertzian stress parameter (KHS) and a kinematic-elastohydrodynamic lubrication parameter (KEHL) are derived first, which reflect the combined contributions of kinematic parameters to Hertzian stress and elastohydrodynamic lubrication film thickness respectively, and then KHS and KEHL are analyzed against each design parameter. Based on the analysis, guidelines for cam mechanism design are proposed.


Author(s):  
M. Vrbka ◽  
M. Vaverka ◽  
R. Poliscuk ◽  
I. Krupka ◽  
M. Hartl

This paper is concerned with elastohydrodynamic lubrication, especially determination of lubricant film thickness and contact pressure within a point contact of friction surfaces of machine parts. A new solution technique for numerical determination of contact pressure is introduced. Direct measurement of contact pressure is very difficult. Hence, input data of lubricant film thickness obtained from the experiment based on colorimetric interferometry are used for calculation of pressure using the inverse elasticity theory. The algorithm is enhanced by convolution in order to increase calculation speed. The approach gives credible results on smooth contact and it is currently extended to enable the study of contact of friction surfaces with dents.


2013 ◽  
Vol 420 ◽  
pp. 30-35
Author(s):  
Khanittha Wongseedakaew ◽  
Jesda Panichakorn

This paper presents the effects of rough surface air-soft elastohydrodynamic lubrication (EHL) of rollers for soft material under the effect of air molecular slip. The time independent modified Reynolds equation and elasticity equation were solved numerically using finite different method, Newton-Raphson method and multigrid multilevel methods were used to obtain the film pressure profiles and film thickness in the contact region. The effects of amplitude of surface roughness, modulus of elasticity and air inlet temperature are examined. The simulation results showed surface roughness has effect on film thickness but it little effect to air film pressure. When the amplitude of surface roughness and modulus of elasticity increased, the air film thickness decreased but air film pressure increased. However, the air inlet temperature increased when the air film thickness increased.


Author(s):  
Eduardo de la Guerra Ochoa ◽  
Javier Echávarri Otero ◽  
Enrique Chacón Tanarro ◽  
Benito del Río López

This article presents a thermal resistances-based approach for solving the thermal-elastohydrodynamic lubrication problem in point contact, taking the lubricant rheology into account. The friction coefficient in the contact is estimated, along with the distribution of both film thickness and temperature. A commercial tribometer is used in order to measure the friction coefficient at a ball-on-disc point contact lubricated with a polyalphaolefin base. These data and other experimental results available in the bibliography are compared to those obtained by using the proposed methodology, and thermal effects are analysed. The new approach shows good accuracy for predicting the friction coefficient and requires less computational cost than full thermal-elastohydrodynamic simulations.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
J. Wang ◽  
C. H. Venner ◽  
A. A. Lubrecht

The effect of single-sided and double-sided harmonic surface waviness on the film thickness, pressure, and temperature oscillations in an elastohydrodynamically lubricated eccentric-tappet pair has been investigated in relation to the eccentricity and the waviness wavelength. The results show that, during one working cycle, the waviness causes significant fluctuations of the oil film, pressure, and temperature, as well as a reduction in minimum film thickness. Smaller wavelength causes more dramatic variations in oil film. The fluctuations of the pressure, film thickness, temperature, and traction coefficient caused by double-sided waviness are nearly the same compared with the single-sided waviness, but the variations are less intense.


Author(s):  
Fadi Ali ◽  
Ivan Křupka ◽  
Martin Hartl

This study presents experimental results on the effect of out-of-contact lubricant channeling on the tribological performance of nonconformal contacts under starved lubrication. Channeling of lubricant was carried out by adding a slider with a limited slot for scraping the displaced lubricant on one of mating surfaces (ball). Thus, the scraped lubricant is forced to flow back into the depleted track through the limited slot resulting in robust replenishment. The measurements have been conducted using optical tribometer (ball-on-disc) equipped with a digital camera and torque sensor. The effect of lubricant channeling was compared to the original contact condition by means of measuring friction and film thickness. The results show that the out-of-contact lubricant channeling leads to a significant enhancement of film thickness and friction reduction under starved conditions. Indeed, the starved elastohydrodynamic lubrication contacts transformed to the fully flooded regime after introducing the flow reconditioning. Moreover, the film thickness decay over time, which is common with starved elastohydrodynamic lubrication contacts, has not been observed in the case of lubricant channeling. However, the beneficial effect of lubricant channeling diminishes as the original contact condition tends to the fully flooded regime. The results of this study can be easily implemented in practical applications such as radial and thrust rolling-element bearings.


Sign in / Sign up

Export Citation Format

Share Document