Numerical Investigations of Oscillatory Motions of a Rotating Viscoelastic Nanofluid Layer in Natural Convection

2014 ◽  
Vol 41 (3) ◽  
pp. 238-259
Author(s):  
Veena Sharma ◽  
Anuradha Chowdhary ◽  
Renu Kumari
2012 ◽  
Vol 232 ◽  
pp. 742-746 ◽  
Author(s):  
H. Shokouhmand ◽  
B. Kamkari

This paper presents numerical investigations on melting of phase change material using paraffin wax inside a double pipe heat exchanger. Numerical simulations are performed for melting of phase change material (PCM) in annulus while the inner pipe has two or four longitudinal fins and the results compared with inner bare tube. The aim of this study is to understand the PCM melting behaviors by observing the natural convection currents movement and melting fronts formation. It is concluded that melting performance of PCM can be significantly improved by applying longitudinal fins on the inner tube.


2017 ◽  
Vol 39 (16) ◽  
pp. 1450-1460 ◽  
Author(s):  
Lotfi Snoussi ◽  
Noureddine Ouerfelli ◽  
Xavier Chesneau ◽  
Ali J. Chamkha ◽  
Fethi Bin Muhammad Belgacem ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
M. Sheikholeslami ◽  
I. Hashim ◽  
Soheil Soleimani

This investigation reports the magnetic field effect on natural convection heat transfer in a curved-shape enclosure. The numerical investigation is carried out using the control volume-based-finite element method (CVFEM). The numerical investigations are performed for various values of Hartmann number and Rayleigh number. The obtained results are depicted in terms of streamlines and isotherms which show the significant effects of Hartmann number on the fluid flow and temperature distribution inside the enclosure. Also, it was found that the Nusselt number decreases with an increase in the Hartmann number.


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
D. Sahray ◽  
G. Ziskind ◽  
R. Letan

This paper provides further insight in heat transfer from horizontal-base pin fin heat-sinks in free convection of air. The main objective is to assess the effect of base size, and this with regard to the effects of fin height and fin population density studied in a previous work (Sahray, D., et al., 2010, “Study and Optimization of Horizontal-Base Pin-Fin Heat Sinks in Natural Convection and Radiation,” ASME J. Heat Transfer, 132(012503), pp. 1–13). To this end, experimental and numerical investigations are performed with sinks of different base sizes. The sinks are made of aluminum, with no contact resistance between the base and the fins, and are heated using foil electrical heaters. In the corresponding numerical study, the sinks and their environment are modeled using the FLUENT 6.3 software. In the experiments, sink bases of 100×100 mm2 and 200×200 mm2 are used, while in the numerical study sinks of 50×50 mm2 are investigated, too. In addition to the sinks with exposed, free edges (Sahray, D., et al., 2010, “Study and Optimization of Horizontal-Base Pin-Fin Heat Sinks in Natural Convection and Radiation,” ASME J. Heat Transfer, 132(012503), pp. 1–13), the same sinks are explored also with their edges blocked. This is done in order to exclude the edge effect, thus making it possible to estimate heat transfer from a sink of an “infinite” base size. Heat-transfer enhancement due to the fins is assessed quantitatively and analyzed for various base sizes and fin heights. The effect of fin location in the array on its contribution to the heat-transfer rate from the sink is analyzed. By decoupling convection from radiation, a dimensional analysis of the results for natural convection is attempted. Interdependence of the base size and fin height effects on the heat transfer is demonstrated. A correlation that encompasses all the cases studied herein is obtained, in which the Nusselt number depends on the Rayleigh number, which uses the “clear” spacing between fins as the characteristic length, and on the dimensions of the fins and the base.


Sign in / Sign up

Export Citation Format

Share Document