FLOW VISUALIZATION AND FREE CONVECTION HEAT TRANSFER AT THE JUNCTION OF SHORT CYLINDERS MOUNTED ON A HEATED WALL

2003 ◽  
Vol 10 (1-2) ◽  
pp. 13-26 ◽  
Author(s):  
Guillaume Polidori ◽  
Jacques Padet
Author(s):  
Tooraj Yousefi ◽  
Sajjad Mahmoodi Nezhad ◽  
Masood Bigharaz ◽  
Saeed Ebrahimi

Steady state two-dimensional free convection heat transfer in a partitioned cavity with adiabatic horizontal and isothermally vertical walls and an adiabatic partition has been investigated experimentally. The experiments have been carried out using a Mach-Zehnder interferometer. The effects of the angel of the adiabatic partition and Rayleigh number on the heat transfer from the heated wall are investigated. Experiments are performed for the values of Rayleigh number based on the cavity side length in the range between 1.5×105 to 4.5×105 and various angle of the partition with respect to horizon from 0° to 90°. The results indicate that at each angle of the adiabatic partition, by increasing the Rayleigh number, the average Nusselt number and heat transfer increase and at each Rayleigh number, the maximum and the minimum heat transfer occur at θ=45° and θ=90°, respectively. A correlation based on the experimental data for the average Nusselt number of the heated wall as a function of Rayleigh number and the angel of the adiabatic partition is presented in the aforementioned ranges.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 559
Author(s):  
Janusz T. Cieśliński ◽  
Slawomir Smolen ◽  
Dorota Sawicka

The results of experimental investigation of free convection heat transfer in a rectangular container are presented. The ability of the commonly accepted correlation equations to reproduce present experimental data was tested as well. It was assumed that the examined geometry fulfils the requirement of no-interaction between heated cylinder and bounded surfaces. In order to check this assumption recently published correlation equations that jointly describe the dependence of the average Nusselt number on Rayleigh number and confinement ratios were examined. As a heat source served electrically heated horizontal tube immersed in an ambient fluid. Experiments were performed with pure ethylene glycol (EG), distilled water (W), and a mixture of EG and water at 50%/50% by volume. A set of empirical correlation equations for the prediction of Nu numbers for Rayleigh number range 3.6 × 104 < Ra < 9.2 × 105 or 3.6 × 105 < Raq < 14.8 × 106 and Pr number range 4.5 ≤ Pr ≤ 160 has been developed. The proposed correlation equations are based on two characteristic lengths, i.e., cylinder diameter and boundary layer length.


Sign in / Sign up

Export Citation Format

Share Document