scholarly journals Free Convection Heat Transfer from Horizontal Cylinders

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 559
Author(s):  
Janusz T. Cieśliński ◽  
Slawomir Smolen ◽  
Dorota Sawicka

The results of experimental investigation of free convection heat transfer in a rectangular container are presented. The ability of the commonly accepted correlation equations to reproduce present experimental data was tested as well. It was assumed that the examined geometry fulfils the requirement of no-interaction between heated cylinder and bounded surfaces. In order to check this assumption recently published correlation equations that jointly describe the dependence of the average Nusselt number on Rayleigh number and confinement ratios were examined. As a heat source served electrically heated horizontal tube immersed in an ambient fluid. Experiments were performed with pure ethylene glycol (EG), distilled water (W), and a mixture of EG and water at 50%/50% by volume. A set of empirical correlation equations for the prediction of Nu numbers for Rayleigh number range 3.6 × 104 < Ra < 9.2 × 105 or 3.6 × 105 < Raq < 14.8 × 106 and Pr number range 4.5 ≤ Pr ≤ 160 has been developed. The proposed correlation equations are based on two characteristic lengths, i.e., cylinder diameter and boundary layer length.

Author(s):  
Mehdi Ashjaee ◽  
Tooraj Yousefi

Laminar free convection heat transfer from vertical and inclined arrays of horizontal isothermal cylinders in air was investigated experimentally and numerically. Experiments were carried out using Mach-Zehnder interferometer and the FLUENT code was used for numerical study. Investigation was performed for vertical and horizontal cylinder spacing from 2 to 5 and to 2 cylinder diameter respectively. The Rayleigh number based on the cylinder diameter varied between 103 and 3×103. The effect of vertical and horizontal cylinder spacing and Rayleigh number on the local heat transfer from each individual cylinder was investigated. It was seen that the local heat transfer coefficient of each cylinder strongly depends on its position relative to the others. This variation of the local heat transfer coefficient was explained by the interaction of plume’s temperature and velocity profiles.


Author(s):  
Tooraj Yousefi ◽  
Sajjad Mahmoodi Nezhad ◽  
Masood Bigharaz ◽  
Saeed Ebrahimi

Steady state two-dimensional free convection heat transfer in a partitioned cavity with adiabatic horizontal and isothermally vertical walls and an adiabatic partition has been investigated experimentally. The experiments have been carried out using a Mach-Zehnder interferometer. The effects of the angel of the adiabatic partition and Rayleigh number on the heat transfer from the heated wall are investigated. Experiments are performed for the values of Rayleigh number based on the cavity side length in the range between 1.5×105 to 4.5×105 and various angle of the partition with respect to horizon from 0° to 90°. The results indicate that at each angle of the adiabatic partition, by increasing the Rayleigh number, the average Nusselt number and heat transfer increase and at each Rayleigh number, the maximum and the minimum heat transfer occur at θ=45° and θ=90°, respectively. A correlation based on the experimental data for the average Nusselt number of the heated wall as a function of Rayleigh number and the angel of the adiabatic partition is presented in the aforementioned ranges.


1995 ◽  
Vol 68 (1) ◽  
pp. 1-5 ◽  
Author(s):  
V. F. Vinokurov ◽  
O. G. Martynenko ◽  
P. P. Khramtsov ◽  
I. A. Shikh

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2909
Author(s):  
Dorota Sawicka ◽  
Janusz T. Cieśliński ◽  
Slawomir Smolen

The results of free convection heat transfer investigation from a horizontal, uniformly heated tube immersed in a nanofluid are presented. Experiments were performed with five base fluids, i.e., ethylene glycol (EG), distilled water (W) and the mixtures of EG and water with the ratios of 60/40, 50/50, 40/60 by volume, so the Rayleigh (Ra) number range was 3 × 104 ≤ Ra ≤ 1.3 × 106 and the Prandtl (Pr) number varied from 4.4 to 176. Alumina (Al2O3) nanoparticles were tested at the mass concentrations of 0.01, 0.1 and 1%. Enhancement as well as deterioration of heat transfer performance compared to the base fluids were detected depending on the composition of the nanofluid. Based on the experimental results obtained, a correlation equation that describes the dependence of the average Nusselt (Nu) number on the Ra number, Pr number and concentration of nanoparticles is proposed.


2015 ◽  
Vol 137 (7) ◽  
Author(s):  
Carlos Alberto Chaves ◽  
Wendell de Queiroz Lamas ◽  
Luiz Eduardo Nicolini do Patrocinio Nunes ◽  
Jose Rui Camargo ◽  
Francisco Jose Grandinetti

This paper aims to present numerical solutions for the problem of steady natural convection heat transfer by double diffusion from a heated cylinder buried in a saturated porous media exposed to constant uniform temperature and concentration in the cylinder and in the media surface. A square finite domain 3 × 3 and acceptance criterion converged solution with an absolute error under 1 × 10−3 were considered to obtain results presented. The Patankar's power law for approaching of variables calculated T, C, and ϕ also was adopted. In order of method validation, an investigation of mesh points number as function of Ra, Le, and N was done. A finite volume scheme has been used to predict the flow, temperature, and concentration distributions at any space from a heat cylinder buried into a fluid-saturated porous medium for a bipolar coordinates system. Examples presented show that the differences in the flow distribution caused not only when Rayleigh number range is considered but also when Lewis number range is considered. Further, increase in the Rayleigh number has a significant influence in the flow distribution when the concentration distribution is considered. Steady natural convection heat transfer by double diffusion from a heated cylinder buried in a saturated porous medium is studied numerically using the finite volume method. To model fluid flow inside the porous medium, the Darcy equation is used. Numerical results are obtained in the form of streamlines, isotherms, and isoconcentrations. The Rayleigh number values range from 0 to 1000, the Lewis number values range from 0 to 100, and the buoyancy ratio number is equal to zero. Calculated values of average heat transfer rates agree reasonably well with values reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document