INFLUENCE OF SPLITTER PLATE ARRANGEMENT ON FLOW PAST RECTANGULAR CYLINDERS OF DIFFERENT ASPECT RATIOS

2005 ◽  
Vol 12 (4) ◽  
pp. 409-434
Author(s):  
S. Vengadesan ◽  
E. G. Tulapurkara ◽  
D. Pramod Kumar
2021 ◽  
Vol 929 ◽  
Author(s):  
A. Chiarini ◽  
M. Quadrio ◽  
F. Auteri

The primary instability of the flow past rectangular cylinders is studied to comprehensively describe the influence of the aspect ratio $AR$ and of rounding the leading- and/or trailing-edge corners. Aspect ratios ranging between $0.25$ and $30$ are considered. We show that the critical Reynolds number ( $\textit {Re}_c$ ) corresponding to the primary instability increases with the aspect ratio, starting from $\textit {Re}_c \approx 34.8$ for $AR=0.25$ to a value of $\textit {Re}_c \approx 140$ for $AR = 30$ . The unstable mode and its dependence on the aspect ratio are described. We find that positioning a small circular cylinder in the flow modifies the instability in a way strongly depending on the aspect ratio. The rounded corners affect the primary instability in a way that depends on both the aspect ratio and the curvature radius. For small $AR$ , rounding the leading-edge corners has always a stabilising effect, whereas rounding the trailing-edge corners is destabilising, although for large curvature radii only. For intermediate $AR$ , instead, rounding the leading-edge corners has a stabilising effect limited to small curvature radii only, while for $AR \geqslant 5$ it has always a destabilising effect. In contrast, for $AR \geqslant 2$ rounding the trailing-edge corners consistently increases $\textit {Re}_c$ . Interestingly, when all the corners are rounded, the flow becomes more stable, at all aspect ratios. An explanation for the stabilising and destabilising effect of the rounded corners is provided.


2018 ◽  
Vol 72 ◽  
pp. 374-390 ◽  
Author(s):  
Hamid Rahman ◽  
Shams Ul Islam ◽  
Waqas Sarwar Abbasi ◽  
Safyan Mukhtar ◽  
Chao Ying Zhou

2014 ◽  
Vol 1082 ◽  
pp. 187-190 ◽  
Author(s):  
Marcelo Ferreira Pelegrini ◽  
Thiago Antonini Alves ◽  
Felipe Baptista Nishida ◽  
Ricardo A. Verdú Ramos ◽  
Cassio R. Macedo Maia

In this work, a hybrid analytical-numerical study was performed in cooling of rectangular rods made from SAE 4150 alloy steel (0.50% carbon, 0.85% chrome, 0.23% molybdenum, and 0.30% silicon). The analysis can be represented by the solution of transient diffusive problems in rectangular cylinders with variable thermo-physical properties in its domain under the boundary conditions of first kind (Dirichlet condition) and uniform initial condition. The diffusion equation was linearized through the Kirchhoff Transformation on the temperature potential to make the analytical treatment easier. The Generalized Integral Transform Technique (GITT) was applied on the diffusion equation in the domain in order to determine the temperature distribution. The physical parameters of interest were determined for several aspect ratios and compared with the results obtained through numerical simulations using the commercial software ANSYS/FluentTM15.


2016 ◽  
Vol 798 ◽  
pp. 371-397 ◽  
Author(s):  
José P. Gallardo ◽  
Helge I. Andersson ◽  
Bjørnar Pettersen

We investigate the early development of instabilities in the oscillatory viscous flow past cylinders with elliptic cross-sections using three-dimensional direct numerical simulations. This is a classical hydrodynamic problem for circular cylinders, but other configurations have received only marginal attention. Computed results for some different aspect ratios ${\it\Lambda}$ from 1 : 1 to 1 : 3, all with the major axis of the ellipse aligned in the main flow direction, show good qualitative agreement with Hall’s stability theory (J. Fluid Mech., vol. 146, 1984, pp. 347–367), which predicts a cusp-shaped curve for the onset of the primary instability. The three-dimensional flow structures for aspect ratios larger than 2 : 3 resemble those of a circular cylinder, whereas the elliptical cross-section with the lowest aspect ratio of 1 : 3 exhibits oblate rather than tubular three-dimensional flow structures as well as a pair of counter-rotating spanwise vortices which emerges near the tips of the ellipse. Contrary to a circular cylinder, instabilities for an elliptic cylinder with sufficiently high eccentricity emerge from four rather than two different locations in accordance with the Hall theory.


2011 ◽  
Vol 23 (7) ◽  
pp. 073603 ◽  
Author(s):  
Srikanth T. ◽  
Harish N. Dixit ◽  
Rao Tatavarti ◽  
Rama Govindarajan

Sign in / Sign up

Export Citation Format

Share Document