scholarly journals DATA-DRIVEN FAILURE PREDICTION IN BRITTLE MATERIALS: A PHASE-FIELD BASED MACHINE LEARNING FRAMEWORK

Author(s):  
Eduardo A. Barros de Moraes ◽  
Hadi Salehi ◽  
Mohsen Zayernouri
2021 ◽  
Author(s):  
TianGe (Terence) Chen ◽  
Angel Chang ◽  
Evan Gunnell ◽  
Yu Sun

When people want to buy or sell a personal car, they struggle to know when the timing is best in order to buy their favorite vehicle for the best price or sell for the most profit. We have come up with a program that can predict each car’s future values based on experts’ opinions and reviews. Our program extracts reviews which undergo sentiment analysis to become our data in the form of positive and negative sentiment. The data is then collected and used to train the Machine Learning model, which will in turn predict the car’s retail price.


2018 ◽  
Vol 7 (2.4) ◽  
pp. 109 ◽  
Author(s):  
Alfred Howard Miller

The aim of this study was to utilize unsupervised machine learning framework to explore a dataset comprised of assessed output by Bachelors of Business, Taxation learners over four successive semesters. The researcher sought to motivate deployment of an evidence-supported, data-driven approach to understand the scope of student learning from a bachelor’s degree in business class taxation class, as a tool for accreditation reporting purposes. Outcomes from the data analysis identified four factors; two related to tax and two related to learning. These factors are, tax theory, and tax practice, along with practical learning and theoretical learning. Research motivated a grounded theory paradigm that explained taxation class learner’s scope of acquired knowledge. The resulting four factor model is a result of the study. The emergent paradigm further explains accounting student’s readiness for career success upon graduation and provides a novel way to meet outcomes reporting requirements mandated by programmatic business accreditors such as required by the Accreditation Council for Business Schools and Programs (ACBSP). 


2020 ◽  
Author(s):  
C. K. Sruthi ◽  
Malay Ranjan Biswal ◽  
Brijesh Saraswat ◽  
Himanshu Joshi ◽  
Meher K. Prakash

SummaryThe role of complete lockdowns in reducing the reproduction ratios (Rt) of COVID-19 is now established. However, the persisting reality in many countries is no longer a complete lockdown, but restrictions of varying degrees using different choices of Non-pharmaceutical interaction (NPI) policies. A scientific basis for understanding the effectiveness of these graded NPI policies in reducing the Rt is urgently needed to address the concerns on personal liberties and economic activities. In this work, we develop a systematic relation between the degrees of NPIs implemented by the 26 cantons in Switzerland during March 9 – September 13 and their respective contributions to the Rt. Using a machine learning framework, we find that Rt which should ideally be lower than 1.0, has significant contributions in the post-lockdown scenario from the different activities - restaurants (0.0523 (CI. 0.0517-0.0528)), bars (0.030 (CI. 0.029-0.030)), and nightclubs (0.154 (CI. 0.154-0.156)). Activities which keep the land-borders open (0.177 (CI. 0.175-0.178)), and tourism related activities contributed comparably 0.177 (CI. 0.175-0.178). However, international flights with a quarantine did not add further to the Rt of the cantons. The requirement of masks in public transport and secondary schools contributed to an overall 0.025 (CI. 0.018-0.030) reduction in Rt, compared to the baseline usage even when there are no mandates. Although causal relations are not guaranteed by the model framework, it nevertheless provides a fine-grained justification for the relative merits of choice and the degree of the NPIs and a data-driven strategy for mitigating Rt.


Ecosphere ◽  
2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Matthew H. Meisner ◽  
Jay A. Rosenheim ◽  
Ilias Tagkopoulos

2021 ◽  
Author(s):  
Antonio Andrade Marin ◽  
Issa Al Balushi ◽  
Adnan Al Ghadani ◽  
Hassana Al Abri ◽  
Abdullah Khalfan Said Al Zaabi ◽  
...  

Abstract Failure Prediction in Oil and Gas Artificial Lift Systems is materializing through the implementation of advanced analytics driven by physics-based models. During the Phase I of this project, two early failure prediction machine learning models were trained offline with historical data and evaluated through a blind test. The next challenge, Phase II, is to operationalize these models on Real-Time and re-assess their accuracy, precision and early prediction (in days) while having the assets focusing on either extending the runtime through optimization, chemical injection, etc. or proactive pump replacement (PPR) for high producers wells with triggered early prediction alarms. The paper details Phase II of live prediction for two assets consisting of 740 wells to enable data-driven insights in engineers’ daily workflow. In Phase I, a collaboration between SMEs and Data Scientists was established to build two failure prediction models for Electrical Submersible Pumps (ESP) using historical data that could identify failure prone wells along with the component at risk with high precision. Phase II entails the development of a Real-Time scoring pipeline to avail daily insights from this model for live wells. To achieve this, PDO leveraged its Digital Infrastructure for extraction of high-resolution measured data for 750 wells daily. A Well Management System (WMS) automatically sustains physics-based ESP models to calculate engineering variables from nodal analysis. Measured and engineered data are sampled, and referencing learnt patterns, the machine learning algorithm (MLA) estimates the probability of failure based on a daily rolling data window. An Exception Based Surveillance (EBS) system tracks well failure probability and highlights affected wells based on business logic. A visualization is developed to facilitate EBS interpretation. All the above steps are automated and synchronized among data historian, WMS and EBS System to operate on a daily schedule. From the Asset, at each highlighted exception, a focus team of well owners and SME initiate a review to correlate the failure probability with ESP signatures to validate the alarm. Aided by physics-based well models, action is directed either towards a) optimization, b) troubleshooting or c) proactive pump replacement in case of inevitable failure conditions. This workflow enables IT infrastructure and Asset readiness to benefit from various modeling initiatives in subsequent phases. Live Implementation of Exceptions from Predictive Analytics is an effective complement to well owners for prioritization of well reviews. Based on alarm validity, risk of failure and underperformance – optimizations, PPRs or workover scheduling are performed with reliability. This methodology would enable a Phase III of scaling up in Real-Time with growing assets wherethe system would be periodically retrained on True Negatives and maintained automatically with minimum manual intervention. It is experienced that a high precision model alone is not enough to reap the benefits of Predictive Analytics. The ability to operate in a production mode and embedding insights into decisions and actions, determines ROI on Data Science initiatives. Digital Infrastructure, a Real Time Well Modeling Platform and Cognitive adaptation of analytics by Well Owners are key for this operationalization that demands reliable data quality, computational efficiency, and data-driven decisions philosophy.


Sign in / Sign up

Export Citation Format

Share Document