scholarly journals CarEnvision: A Data-Driven Machine Learning Framework for Automated Car Value Prediction

2021 ◽  
Author(s):  
TianGe (Terence) Chen ◽  
Angel Chang ◽  
Evan Gunnell ◽  
Yu Sun

When people want to buy or sell a personal car, they struggle to know when the timing is best in order to buy their favorite vehicle for the best price or sell for the most profit. We have come up with a program that can predict each car’s future values based on experts’ opinions and reviews. Our program extracts reviews which undergo sentiment analysis to become our data in the form of positive and negative sentiment. The data is then collected and used to train the Machine Learning model, which will in turn predict the car’s retail price.

2021 ◽  
pp. 1-13
Author(s):  
C S Pavan Kumar ◽  
L D Dhinesh Babu

Sentiment analysis is widely used to retrieve the hidden sentiments in medical discussions over Online Social Networking platforms such as Twitter, Facebook, Instagram. People often tend to convey their feelings concerning their medical problems over social media platforms. Practitioners and health care workers have started to observe these discussions to assess the impact of health-related issues among the people. This helps in providing better care to improve the quality of life. Dementia is a serious disease in western countries like the United States of America and the United Kingdom, and the respective governments are providing facilities to the affected people. There is much chatter over social media platforms concerning the patients’ care, healthy measures to be followed to avoid disease, check early indications. These chatters have to be carefully monitored to help the officials take necessary precautions for the betterment of the affected. A novel Feature engineering architecture that involves feature-split for sentiment analysis of medical chatter over online social networks with the pipeline is proposed that can be used on any Machine Learning model. The proposed model used the fuzzy membership function in refining the outputs. The machine learning model has obtained sentiment score is subjected to fuzzification and defuzzification by using the trapezoid membership function and center of sums method, respectively. Three datasets are considered for comparison of the proposed and the regular model. The proposed approach delivered better results than the normal approach and is proved to be an effective approach for sentiment analysis of medical discussions over online social networks.


2020 ◽  
Vol 1 (2) ◽  
pp. 61-66
Author(s):  
Febri Astiko ◽  
Achmad Khodar

This study aims to design a machine learning model of sentiment analysis on Indosat Ooredoo service reviews on social media twitter using the Naive Bayes algorithm as a classifier of positive and negative labels. This sentiment analysis uses machine learning to get patterns an model that can be used again to predict new data.


2018 ◽  
Vol 20 (47) ◽  
pp. 29661-29668 ◽  
Author(s):  
Michael J. Willatt ◽  
Félix Musil ◽  
Michele Ceriotti

By representing elements as points in a low-dimensional chemical space it is possible to improve the performance of a machine-learning model for a chemically-diverse dataset. The resulting coordinates are reminiscent of the main groups of the periodic table.


2021 ◽  
pp. 1-27
Author(s):  
Mitansh Doshi ◽  
Xin Ning

Abstract This paper presents a data-driven framework that can accurately predict the buckling loads of composite near-spherical shells (i.e. variants of regular icosahedral shells) under external pressure. This framework utilizes finite element simulations to generate data to train a machine learning regression model based on open-source algorithm Extreme Gradient Boosting (XGBoost). The trained XGBoost machine learning model can then predict buckling loads of new designs with small margin of error without time-consuming finite element simulations. Examples of near-spherical composite shells with various geometries and material layups demonstrate the efficiency and accuracy of the framework. The machine learning model removes the demanding hardware and software requirements on computing buckling loads of near-spherical shells, making it particularly suitable to users without access to those computational resources.


2020 ◽  
Vol 16 (5) ◽  
pp. 155014772091969
Author(s):  
Hui Cao ◽  
Shubo Liu ◽  
Renfang Zhao ◽  
Xingxing Xiong

Nowadays, wireless sensor network technology is being increasingly popular which is applied to a wide range of Internet of Things. Especially, Power Internet of Things is an important and rapidly growing section in Internet of Thing systems, which benefited from the application of wireless sensor networks to achieve fine-grained information collection. Meanwhile, the privacy risk is gradually exposed, which is the widespread concern for electricity power consumers. Non-intrusive load monitoring, in particular, is a technique to recover state of appliances from only the energy consumption data, which enables adversary inferring the behavior privacy of residents. There can be no doubt that applying local differential privacy to achieve privacy preserving in the local setting is more trustworthy than centralized approach for electricity customers. Although it is hard to control the risk and achieve the trade-off between privacy and utility by traditional local differential privacy obfuscation mechanisms, some existing obfuscation mechanisms based on artificial intelligence, called advanced obfuscation mechanisms, can achieve it. However, the large computing resource consumption to train the machine learning model is not affordable for most Power Internet of Thing terminal. In this article, to solve this problem, IFed was proposed—a novel federated learning framework that let electric provider who normally is adequate in computing resources to help Power Internet of Thing users. First, the optimized framework was proposed in which the trade-off between local differential privacy, data utility, and resource consumption was incorporated. Concurrently, the following problem of privacy preserving on the machine learning model transport between electricity provider and customers was noted and resolved. Last, users were categorized based on different levels of privacy requirements, and stronger privacy guarantee was provided for sensitive users. The formal local differential privacy analysis and the experiments demonstrated that IFed can fulfill the privacy requirements for Power Internet of Thing users.


Sign in / Sign up

Export Citation Format

Share Document