scholarly journals Using unsupervised machine learning to model tax practice learning theory

2018 ◽  
Vol 7 (2.4) ◽  
pp. 109 ◽  
Author(s):  
Alfred Howard Miller

The aim of this study was to utilize unsupervised machine learning framework to explore a dataset comprised of assessed output by Bachelors of Business, Taxation learners over four successive semesters. The researcher sought to motivate deployment of an evidence-supported, data-driven approach to understand the scope of student learning from a bachelor’s degree in business class taxation class, as a tool for accreditation reporting purposes. Outcomes from the data analysis identified four factors; two related to tax and two related to learning. These factors are, tax theory, and tax practice, along with practical learning and theoretical learning. Research motivated a grounded theory paradigm that explained taxation class learner’s scope of acquired knowledge. The resulting four factor model is a result of the study. The emergent paradigm further explains accounting student’s readiness for career success upon graduation and provides a novel way to meet outcomes reporting requirements mandated by programmatic business accreditors such as required by the Accreditation Council for Business Schools and Programs (ACBSP). 

2021 ◽  
Vol 303 ◽  
pp. 117656
Author(s):  
Maitreyee Dey ◽  
Soumya Prakash Rana ◽  
Clarke V. Simmons ◽  
Sandra Dudley

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alessandro Bitetto ◽  
Paola Cerchiello ◽  
Charilaos Mertzanis

AbstractEpidemic outbreaks are extreme events that become more frequent and severe, associated with large social and real costs. It is therefore important to assess whether countries are prepared to manage epidemiological risks. We use a fully data-driven approach to measure epidemiological susceptibility risk at the country level using time-varying information. We apply both principal component analysis (PCA) and dynamic factor model (DFM) to deal with the presence of strong cross-section dependence in the data. We conduct extensive in-sample model evaluations of 168 countries covering 17 indicators for the 2010–2019 period. The results show that the robust PCA method accounts for about 90% of total variability, whilst the DFM accounts for about 76% of the total variability. Our index could therefore provide the basis for developing risk assessments of epidemiological risk contagion. It could be also used by organizations to assess likely real consequences of epidemics with useful managerial implications.


Author(s):  
Lidong Wu

The No-Free-Lunch theorem is an interesting and important theoretical result in machine learning. Based on philosophy of No-Free-Lunch theorem, we discuss extensively on the limitation of a data-driven approach in solving NP-hard problems.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Trevor David Rhone ◽  
Wei Chen ◽  
Shaan Desai ◽  
Steven B. Torrisi ◽  
Daniel T. Larson ◽  
...  

Abstract We use a data-driven approach to study the magnetic and thermodynamic properties of van der Waals (vdW) layered materials. We investigate monolayers of the form $$\hbox {A}_2\hbox {B}_2\hbox {X}_6$$ A 2 B 2 X 6 , based on the known material $$\hbox {Cr}_2\hbox {Ge}_2\hbox {Te}_6$$ Cr 2 Ge 2 Te 6 , using density functional theory (DFT) calculations and machine learning methods to determine their magnetic properties, such as magnetic order and magnetic moment. We also examine formation energies and use them as a proxy for chemical stability. We show that machine learning tools, combined with DFT calculations, can provide a computationally efficient means to predict properties of such two-dimensional (2D) magnetic materials. Our data analytics approach provides insights into the microscopic origins of magnetic ordering in these systems. For instance, we find that the X site strongly affects the magnetic coupling between neighboring A sites, which drives the magnetic ordering. Our approach opens new ways for rapid discovery of chemically stable vdW materials that exhibit magnetic behavior.


2020 ◽  
Author(s):  
Jung-Hyun Kim ◽  
Simon I. Briceno ◽  
Cedric Y. Justin ◽  
Dimitri Mavris

2020 ◽  
Author(s):  
Adam Soffer ◽  
Morya Ifrach ◽  
Stefan Ilic ◽  
Ariel Afek ◽  
Dan Vilenchik ◽  
...  

AbstractDNA–protein interactions are essential in all aspects of every living cell. Understanding of how features embedded in the DNA sequence affect specific interactions with proteins is challenging but important, since it may contribute to finding the means to regulate metabolic pathways involving DNA–protein interactions. Using a massive experimental benchmark dataset of binding scores for DNA sequences and a machine learning workflow, we describe the binding to DNA of T7 primase, as a model system for specific DNA–protein interactions. Effective binding of T7 primase to its specific DNA recognition se-quences triggers the formation of RNA primers that serve as Okazaki fragment start sites during DNA replication.


2020 ◽  
Vol 171 ◽  
pp. 105286 ◽  
Author(s):  
Mohit Taneja ◽  
John Byabazaire ◽  
Nikita Jalodia ◽  
Alan Davy ◽  
Cristian Olariu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document