INTEGRATED METHOD FOR DYNAMIC REPLICATION OF SERVICES IN SOFTWARE-DEFINED NETWORKS

2017 ◽  
Vol 76 (5) ◽  
pp. 417-432
Author(s):  
E. Tkachova ◽  
A. T. Abu Jassar
2014 ◽  
Author(s):  
A. Abdul Abdul Latiff ◽  
D. P. Ghosh ◽  
Z. Tuan Harith

Author(s):  
Ian Vilar Bastos ◽  
Vinicius Correa Ferreira ◽  
Debora Christina Muchaluat-Saade ◽  
Celio Vinicius Neves de Albuquerque ◽  
Igor Monteiro Moraes

Author(s):  
Tuan Anh Tran ◽  
Andrei Lobov ◽  
Tord Hansen Kaasa ◽  
Morten Bjelland ◽  
Ole Terje Midling

AbstractIn this paper, a CAD integrated method is proposed for automatic recognition of potential weld locations in large assembly structures predominantly comprised of weld joints. The intention is to reduce the total man-hours spent on manually locating, assigning, and maintaining weld-related information throughout the product life cycle. The method utilizes spatial analysis of extracted stereolithographic data in combination with available CAD functions to determine whether the accessibility surrounding a given intersection edge is sufficient for welding. To demonstrate the method, a system is developed in Siemens NX using their NXOpen Python API. The paper presents the application of the method to real-life use cases in varying complexity in cooperation with industrial partners. The system is able to correctly recognize almost all weld lines for the parts considered within a few minutes. Some exceptions are known for particular intersection lines located deep within notched joints and geometries weldable through sequential assembly, which are left as a subject to further works.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5042
Author(s):  
Tomasz Nycz ◽  
Tadeusz Czachórski ◽  
Monika Nycz

The increasing use of Software-Defined Networks brings the need for their performance analysis and detailed analytical and numerical models of them. The primary element of such research is a model of a SDN switch. This model should take into account non-Poisson traffic and general distributions of service times. Because of frequent changes in SDN flows, it should also analyze transient states of the queues. The method of diffusion approximation can meet these requirements. We present here a diffusion approximation of priority queues and apply it to build a more detailed model of SDN switch where packets returned by the central controller have higher priority than other packets.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 423
Author(s):  
Márk Szalay ◽  
Péter Mátray ◽  
László Toka

The stateless cloud-native design improves the elasticity and reliability of applications running in the cloud. The design decouples the life-cycle of application states from that of application instances; states are written to and read from cloud databases, and deployed close to the application code to ensure low latency bounds on state access. However, the scalability of applications brings the well-known limitations of distributed databases, in which the states are stored. In this paper, we propose a full-fledged state layer that supports the stateless cloud application design. In order to minimize the inter-host communication due to state externalization, we propose, on the one hand, a system design jointly with a data placement algorithm that places functions’ states across the hosts of a data center. On the other hand, we design a dynamic replication module that decides the proper number of copies for each state to ensure a sweet spot in short state-access time and low network traffic. We evaluate the proposed methods across realistic scenarios. We show that our solution yields state-access delays close to the optimal, and ensures fast replica placement decisions in large-scale settings.


Sign in / Sign up

Export Citation Format

Share Document