scholarly journals Experimental characterization of the flexural behaviour of steel fibre reinforced concrete according to RILEM TC 162-TDF recommendations

Author(s):  
J. Barros
2017 ◽  
Vol 23 (6) ◽  
pp. 806-813 ◽  
Author(s):  
Inmaculada MARTÍNEZ-PÉREZ ◽  
Juozas VALIVONIS ◽  
Remigijus ŠALNA ◽  
Alfonso COBO-ESCAMILLA

The building of structures from steel fibre reinforced concrete (SFRC) in the external and conventional rein­forced concrete (RC) in the internal layer represents an economical alternative of structures effectively using SFRC. The paper presents test results of flexural behaviour of layered beams with SFRC external layers and RC internal layer. The behaviour of these beams is compared to test results of SFRC and conventional RC beams. The test results show, that the flexural load capacity for all series of beams is nearly similar, but the deflections of layered beams are less comparing to monolithic ones. It also been shown that the equations indicated in the Eurocode 2 can be used to design the flexural reinforcement in layered SFRC beams.


2016 ◽  
Vol 17 (6) ◽  
pp. 1082-1093 ◽  
Author(s):  
Thomaz Eduardo Teixeira Buttignol ◽  
Matteo Colombo ◽  
Marco di Prisco

2014 ◽  
Vol 580-583 ◽  
pp. 2213-2219 ◽  
Author(s):  
Lin Liao ◽  
Sergio Cavalaro ◽  
Albert de la Fuente ◽  
Antonio Aguado

Many researches have been conducted in past decades for promoting the application of steel fibre reinforced concrete (SFRC), either conventional or self-compacting. However, the differences of post-crack behaviour and the properties of these two types of concrete remains unclear. The objective of this paper is to analyse such differences in terms of flexural behaviour, fibre orientation and contribution as well as the fibre content. For that, an extensive experimental campaign was carried out. In total 3 mixes of self-compacting and 3 mixes with traditional concrete were produced with the nominal fibre contents of 30kg/m3, 45kg/m3 and 60kg/m3. In each series, specimens were produces and characterized by three point bending test (code EN 14651) and inductive test. The results illustrate how fibre orientation and distribution justify the differences in the mechanical behaviour of the materials and the scatter of the bending test results.


2015 ◽  
Vol 49 (3) ◽  
pp. 969-982 ◽  
Author(s):  
Dominic Daviau-Desnoyers ◽  
Jean-Philippe Charron ◽  
Bruno Massicotte ◽  
Pierre Rossi ◽  
Jean-Louis Tailhan

2016 ◽  
Vol 126 ◽  
pp. 253-262 ◽  
Author(s):  
Bensaid Boulekbache ◽  
Mostefa Hamrat ◽  
Mohamed Chemrouk ◽  
Sofiane Amziane

2018 ◽  
Vol 189 ◽  
pp. 1007-1018 ◽  
Author(s):  
Zahran Al-Kamyani ◽  
Fabio P. Figueiredo ◽  
Hang Hu ◽  
Maurizio Guadagnini ◽  
Kypros Pilakoutas

2015 ◽  
Vol 1106 ◽  
pp. 136-139
Author(s):  
Josef Fládr ◽  
Iva Broukalová

The paper describes a new methodology of investigation of long-term behaviour of fibre reinforced concrete (FRC) with of synthetic fibres. A set of tests was manufactured from FRC with synthetic fibres commonly used for production of FRC and referential set from SFRC (steel fibre reinforced concrete) and subjected to long-term loading. The testing is based on three-point flexural loading. In given time intervals deflections are measured and recorded. Results of investigations are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document