scholarly journals Experimental study of flexural behaviour of layered steel fibre reinforced concrete beams

2017 ◽  
Vol 23 (6) ◽  
pp. 806-813 ◽  
Author(s):  
Inmaculada MARTÍNEZ-PÉREZ ◽  
Juozas VALIVONIS ◽  
Remigijus ŠALNA ◽  
Alfonso COBO-ESCAMILLA

The building of structures from steel fibre reinforced concrete (SFRC) in the external and conventional rein­forced concrete (RC) in the internal layer represents an economical alternative of structures effectively using SFRC. The paper presents test results of flexural behaviour of layered beams with SFRC external layers and RC internal layer. The behaviour of these beams is compared to test results of SFRC and conventional RC beams. The test results show, that the flexural load capacity for all series of beams is nearly similar, but the deflections of layered beams are less comparing to monolithic ones. It also been shown that the equations indicated in the Eurocode 2 can be used to design the flexural reinforcement in layered SFRC beams.

2019 ◽  
Vol 26 (4) ◽  
pp. 197-208
Author(s):  
Leo Gu Li ◽  
Albert Kwok Hung Kwan

Previous research studies have indicated that using fibres to improve crack resistance and applying expansive agent (EA) to compensate shrinkage are both effective methods to mitigate shrinkage cracking of concrete, and the additions of both fibres and EA can enhance the other performance attributes of concrete. In this study, an EA was added to fibre reinforced concrete (FRC) to produce concrete mixes with various water/binder (W/B) ratios, steel fibre (SF) contents and EA contents for testing of their workability and compressive properties. The test results showed that adding EA would slightly increase the superplasticiser (SP) demand and decrease the compressive strength, Young’s modulus and Poisson’s ratio, but significantly improve the toughness and specific toughness of the steel FRC produced. Such improvement in toughness may be attributed to the pre-stress of the concrete matrix and the confinement effect of the SFs due to the expansion of the concrete and the restraint of the SFs against such expansion.


2014 ◽  
Vol 5 (2) ◽  
pp. 119-125
Author(s):  
I. Kovács

The present paper of a series deals with the experimental characterisation of flexural toughness properties of structural concrete containing different volume of hooked-end steel fibre reinforcement (75 kg/m3, 150 kg/m3). Third-point flexural tests were carried out on steel fibre reinforced concrete beams having a cross-section of 80 mm × 85 mm with the span of 765 mm, hence the shear span to depth ratio was 3. Beams were sawn out of steel fibre reinforced slab elements (see Part I) in order to take into consideration the introduced privilege fibre orientation (I and II) and the position of the beam (Ba-a, Ba-b, Ba-c) before sawing (see Part I). Flexural toughness properties were determined considering different standard specifications, namely the method of the ASTM (American Standards for Testing Materials), the process of the JSCE (Japan Society of Civil Engineering), and the final proposal of Banthia and Trottier for the post cracking strength. Consequently, behaviour of steel fibre reinforced concrete was examined in bending taking into consideration different experimental parameters such as fibre content, concrete mix proportions, fibre orientation, positions of test specimens in the formwork, while experimental constants were the size of specimens, the type of fibre used and the test set-up and test arrangement.


2021 ◽  
Vol 15 (1) ◽  
pp. 81-92
Author(s):  
Constantinos B. Demakos ◽  
Constantinos C. Repapis ◽  
Dimitros P. Drivas

Aims: The aim of this paper is to investigate the influence of the volume fraction of fibres, the depth of the beam and the shear span-to-depth ratio on the shear strength of steel fibre reinforced concrete beams. Background: Concrete is a material widely used in structures, as it has high compressive strength and stiffness with low cost manufacturing. However, it presents low tensile strength and ductility. Therefore, through years various materials have been embedded inside it to improve its properties, one of which is steel fibres. Steel fibre reinforced concrete presents improved flexural, tensile, shear and torsional strength and post-cracking ductility. Objective: A better understanding of the shear performance of SFRC could lead to improved behaviour and higher safety of structures subject to high shear forces. Therefore, the influence of steel fibres on shear strength of reinforced concrete beams without transverse reinforcement is experimentally investigated. Methods: Eighteen concrete beams were constructed for this purpose and tested under monotonic four-point bending, six of which were made of plain concrete and twelve of SFRC. Two different aspect ratios of beams, steel fibres volume fractions and shear span-to-depth ratios were selected. Results: During the experimental tests, the ultimate loading, deformation at the mid-span, propagation of cracks and failure mode were detected. From the tests, it was shown that SFRC beams with high volume fractions of fibres exhibited an increased shear capacity. Conclusion: The addition of steel fibres resulted in a slight increase of the compressive strength and a significant increase in the tensile strength of concrete and shear resistance capacity of the beam. Moreover, these beams exhibit a more ductile behaviour. Empirical relations predicting the shear strength capacity of fibre reinforced concrete beams were revised and applied successfully to verify the experimental results obtained in this study.


2014 ◽  
Vol 580-583 ◽  
pp. 2213-2219 ◽  
Author(s):  
Lin Liao ◽  
Sergio Cavalaro ◽  
Albert de la Fuente ◽  
Antonio Aguado

Many researches have been conducted in past decades for promoting the application of steel fibre reinforced concrete (SFRC), either conventional or self-compacting. However, the differences of post-crack behaviour and the properties of these two types of concrete remains unclear. The objective of this paper is to analyse such differences in terms of flexural behaviour, fibre orientation and contribution as well as the fibre content. For that, an extensive experimental campaign was carried out. In total 3 mixes of self-compacting and 3 mixes with traditional concrete were produced with the nominal fibre contents of 30kg/m3, 45kg/m3 and 60kg/m3. In each series, specimens were produces and characterized by three point bending test (code EN 14651) and inductive test. The results illustrate how fibre orientation and distribution justify the differences in the mechanical behaviour of the materials and the scatter of the bending test results.


Sign in / Sign up

Export Citation Format

Share Document